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Kurzfassung

Die Geomorphometrie ist die Wissenschaft der quantitativen Analyse von Terrainober-
flächen. Die durch Vermessung des Terrains quantifizierten Oberflächen erlauben die
Bestimmung der geomorphometrischen Eigenschaften, wie Höhen, Krümmungen, Neigun-
gen und Distanzen. Diese sind für die Analyse von Terrains in Archäeologie, Geologie und
Planetenwissenschaften, sowie anderen, von Bedeutung. Durch digitale Rekonstruktion
können Terrains abseits der Forschungsstätte digital vermessen werden. Die durch hohe
Auflösung oder große Abmessungen entstehenden großen Datenmengen stellen eine Her-
ausforderung für die Echtzeitvisualisierung mit interaktiven Bildraten dieser Terrains zur
explorativen Erkundung dar. Dies erfordert es, geringere Auflösungen oder kleinere Ter-
rainauschnitte zu wählen. Durch Terrainstreaming können größere oder höher aufgelöste
Terrains dargestellt werden. Da durch Fehler in der Rekonstruktion Ungenaugikeiten
entstehen, ist es wichtig auf diese zu quantifizieren und auf sie aufmerksam zu machen.

In dieser Diplomarbeit wird ein Out-of-Core Rendering Algorithmus für große Terrains
mit mehreren Ebenen präsentiert. Der präsentierte Algorithmus erreicht Terrainstreaming
in interaktiven Bildraten für Szenen mit bis zu 775 M Dreiecken und 156 GB in der
feinsten Detailstufe und einer Gesamtgröße von 222 GB.

Weiters wird ein verbesserter Messalgorithmus für die digitale Vermessung großer Ter-
rains mit mehreren Ebene präsentiert. Der Algorithmus verwendet Unterabtastung mit
variabler Rate (VRSS) und Erkennung gemeinsamer Kanten (SED) und wird als VR-
SS+SED bezeichnet. VRSS+SED erzielt bessere Resultate als Unterabtastung mit fixer
Rate (FRSS), der Abtaststrategie die in State-of-The-Art Werkzeugen für planetare
Geologie, wie dem Planetry Robotics 3D Viewer (PRo3D) verwendet wird. Die frühere
Terminierung bei höherer Genaugikeit und gleicher Anzahl an Abstastungen wird erzielt,
indem die Ray Casting Ebene mit der geteilten Kante geschnitten wird um analytisch
einen Mittelpunkt zwischen zwei benachbarten Primitiven zu berechnen. Weiters wird
eine neue Unsicherheits-Metrik namens On-Data Ratio (ODR) präsentiert, die es es
erlaubt auf Unsicherheiten in State-of-the-Art Messalgorithmen aufmerksam zu machen.

Die präsentierten Algorithmen werden evaluiert indem ein in Unity unter der Verwendung
von des Data-Oriented Techstack (DOTS) implementierter Prototyp verwendet wird. Die
Algorithmen werden gegen PRo3D evaluiert und die Resultate präsentiert und diskutiert.
Der vorgestellte Algorithmus erreich, bei ähnlicher Speichergröße, 15x schnellere Ladezeit
als PR3oD für die 222 GB große Szene
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Abstract

Geomorphometry is the science of quantitative analysis of terrain surfaces. By surveying
terrains to quantify their surfaces, it is possible to calculate the geomorphometric
properties, such as heights, curvature, slopes, and distances. These are important for
the analysis of terrains in archaeology, geology, planetary sciences, and others. By using
digital terrain reconstructions, off-site terrain surveying becomes possible. The high
resolution or large scale of terrains are a challenge for real-time rendering at interactive
frame rates for exploration. This requires limiting resolution or loading smaller terrain
parts. The use of terrain streaming allows rendering higher resolution or terrains of
greater extents. As errors remain, it is important to quantify and visualize them.

In this thesis, an out-of-core rendering algorithm for large-scale multi-layered terrain is
presented. The presented streaming algorithm manages to stream scenes with 775 M
triangles and 156 GB on their finest LOD, and a total size of 222 GB, at interactive
frame-rates and on commodity hardware.

Additionally, an improved measurement algorithm for digital terrain surveying of large-
scale multi-layered terrain is presented in this thesis. The measurement algorithm
using variable-rate subsampling (VRSS) and Shared Edge Detection (SED), is called
VRSS+SED and achieves better results than the fixed-rate subsampling (FRSS) strategy
used in state-of-the-art planetary geology tools such as Planetry Robotics 3D Viewer
(PRo3D). It achieves earlier termination at higher precision for the same number of samples
by intersecting found shared edges with the ray casting plane to analytically calculate
the midpoint between two neighboring primitives. Furthermore, a novel uncertainty
metric called On-Data Ratio (ODR) is presented which allows raising awareness about
the uncertainty in the results of the used state-of-the-art measurements algorithm.

The presented algorithms are evaluated using an implementation in a prototype using
the Unity engine and its Data-Oriented Techstack (DOTS). The algorithms are evaluted
against PRo3D and the results are presented and discussed. The presented implementation
achieves 15x as fast loading times as Pro3D for the 222 GB large scene at a similar
storage size.
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CHAPTER 1
Introduction

1.1 Motivation
Terrain surveying is the act of measuring a terrain’s properties, such as height, curvature,
slopes and distance. These are later analysed and interpreted in the sciences of archaeology,
geology, planetary sciences, and others. By using digital terrain reconstructions, surveying
can be done digitally and off-site. In digital terrain surveying, users explore terrain
reconstruction interactively, searching for features of interest. Real-time rendering is in
consequence necessary. The data of interest can easily become much larger than the
available memory. This is a challenge for realt-ime rendering and measuring algorithms,
and thus, out-of-core algorithms are needed. Even with out-of-core solutions, the scale
and resolution at which interactive framerates can be achieved are limited. Using a lower
resolution leads to inaccuracies and errors, and consequently to uncertainty. To avoid
false trust in the result of measurements performed across areas of uncertainty, it is
neccessary to quantify such uncertainties and raise the users’ awareness of their existence.
Figure 1.1 shows a comparison of on-site terrain surveying and digital terrain surveying.

The high-performance requirements for digital terrain surveying software often require
specialized tools. Higher-level usually efficient general purpose rendering and physics
subsystems. Using the rendering and physics subsystems of a higher-level engine, and
only implementing use case specific tools from scratch, could for this reason be one way
to make it easier and cheaper to develop specialized digital terrian surveying software.
The abstraction and functionality these engines provide come at the cost of less flexibility.
A prerequisite to benefit from the provided functionality is often close adherence to the
provided data models and algorithms.

The goal of this thesis is to evaluate the benefits and limitations of using such a higher-level
engine, Unity, and to present an implementation that supports streaming of large terrains,
rendering them at interactive framerates and measuring geomorphometric properties,
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1. Introduction

while also quantifying the uncertainty of those measurements and visualizing them. The
developed software is named Visionary.

(a) Geologists discussing an outcrop during a
field trip. The widths of thin bedding, as esti-
mated by the professor’s hands, are important
indicators. Image reprinted from Mike Beaure-
gard [Can m].

(b) Digital terrain surveying of the Victoria
Crater with Visionary. The green circle and
yellow-blue polylines measure walking distances
around and through the crater, the red line eval-
uates the diameter. The small green dot are
multiple annotations on an outcrop.

Figure 1.1: Comparison of terrestrial on-site terrain surveying and digital terrain survey-
ing.

1.2 Problem Definition
In digital terrain surveying of large-scale terrains, a central problem is achieving interac-
tivity. Interactivity is important, as terrain surveying is highly explorative.
The large size of terrain data can be challenging for achieving rendering at interactive
framerates and quick measurements. The resolution and scale of the terrain are the main
contributing factors to the data size. An increasing resolution allows for more precise
terrain reconstructions and hence exact measurements. A larger scale not only allows
exploring a larger terrain region, but also can help to understand the surrounding context
of a terrain surface.
When the data size exceeds the available memory, out-of-core solutions are required.
Terrain streaming is such a solution. In terrain streaming the terrain is partitioned into
sufficiently small chunks. These chunks are then swapped (streamed) between slower
bulk memory and fast main and graphics memory. Compact storage and efficient data
layout are requirements for fast streaming from slow bulk storage. A streaming and level-
of-detail selection that supports efficient rendering is in consequence required. Solutions
differ between client-side and server-side storage and the metrics used to decide which
chunks to prefetch or stream in.

2



1.2. Problem Definition

To increase the rendering performance, level-of-detail (LOD) algorithms can be used.
LOD algorithms replace objects in visually less important areas with lower-quality
representations to increase the rendering performance. LOD algorithms differ in how
LODs are generated, if they are adaptive or reactive, discrete or continuous, and how
LODs are selected. In digital terrain surveying, measurements have to be performed on
the actual data. This means that while we can utilize LODs for rendering, we cannot
do so for measurements and might require loading both the low- and high-resolution
version of a chunk during a measurement. However, other acceleration algorithms like
view-frustum culling and spatial acceleration structures like bounding volume hierarchies
can be used to speed up measurements.
At large scales, numeric precison becomes an issue. Single-precision floating-point formats
(floats) are the dominant numeric type for efficiency reasons. Floats only provide 6-7
significant digits, which can easily become a problem with real-world quantities. Most of
all, the vertex position values can become too large. Coordinate system transfer, e.g.,
origin shift, is one method to reduce this problem.
One method for digital terrain surveying is via user-drawn polylines and projecting the
polyline segments onto the terrain. This method is implemented in PRo3D [Prob], one
of the state-of-the-art digital terrain surveying solutions for large planetary terrains.
Geomorphometric properties are evaluated at the user-selected feature points. The
terrain profile is then reconstructed by connecting two consecutive points by a straight
line. Subsampling is used to increase the accuracy of the resulting profile. One way
to achieve the projection of the polyline is via ray casting. The performance of these
raycasts is thus crucial. The choice of subsamples is important, as it can heavily affect the
result. One straightforward subsampling strategy is fixed-rate subsampling. In fixed-rate
subsampling, a fixed number of subsamples is evaluated in equal-distance intervals. This
method is used in PRo3D, but it does not take the geometry into account, and is for this
reason likely to over- or undersample. A better approach is variable-rate subsampling,
where more subsamples are used in areas of complex geometry and less in areas with little
change in profile. However, the quality and performance of variable-length subsampling is
dependent on the subsampling algorithm and termination criteria. A simple termination
criteria is a fixed number of rays, but with differently distributed sample points.
Due to missing data, reconstruction errors and early termination, it is not clear how
certain a measurement is. When two subsamples are connected by straight line, they
are only an exact reconstruction of the surface profile, if they are connected by coplanar
primitives, e.g., triangles or quads. A line segment is for this reason considered certain, if
it embedded in a planar primitive. All other segments of the reconstructed profile are in
consequence a source of uncertainty. To give users the chance to judge if a measurement
can be trusted, it is necessary to quantify this uncertainty and visualize its source.
State-of-the-art solutions such as the Planetary Robotics 3D Viewer (PRo3D) are highly
specialized tools. Using a higher-level engine as framework instead promises faster
development because of already provided functionality. However, this can easily turn out
as a false promise when the need to adhere to provided algorithms and data structures

3



1. Introduction

becomes more restricting than helpful. It is consequently required to make such limitations
visible.

1.3 Contributions
The main contribution of this thesis is a streaming algorithm for out-of-core rendering of
large scale terrain. The algorithm streams large-scale multi-layered terrain in general
3D-mesh representation on commodity hardware. It is based on the out-of-core streaming
algorithm and render front selection by Varadhan and Manocha [VM02], which is adapted
for independent, asynchronous and parallel streaming of multiple hierarchical level-of-
details (M-LODs). Similar to their algorithm, the potentially visible front of the scene
graph is calculated. Nodes are then streamed in until a given resource quota is filled. A
memory and a target frame-rate scheduler are implemented to ensure efficient streaming.
View-frustum culling is used to cull entire HLODs. In contrast to their solution, a
Euclidean distance based metric for discrete general meshes using Axis Aligned Bounding
Box (AABB) and LOD ranges are used. Utilizing a single metric for both streaming
selection and LOD selection allows to reuse the calculated results. The streaming
algorithm achieves interative frame-rates for a scene with 775 M triangles and 156 GB
on its finest LOD, and a total size of 222 GB.

Furthermore, an out-of-core measurement algorithm for digital terrain surveying of large-
scale multi-layered terrain is presented. The polyline based surveying tool is based on the
method used in the state-of-the-art digital terrain visualization tool Planetary Robotics
3D Viewer (PRo3D) [Prob]. The fixed-rate subsampling strategy (FRSS) used in PRo3D
is improved by using variable-rate subsampling (VRSS) instead and the Shared Edge
Detection (SED) algorithm presented in this thesis. Compared to the FRSS, VRSS+SED
does terminate earlier and with higher accuracy at equal sample count. VRSS+SED
achieves this by intersecting a shared edge with the ray casting plane to calculate an
exact midpoint between neighbouring primitives analytically.

Lastly, a novel but simple uncertainty metric, called On-Data Ratio (ODR) is presented
in this thesis, that allows to quantify the uncertainty of such measurements. ODR allows
quantifying uncertainty and to raise awareness about its presence in the polyline based
state-of-the-art measurement algorithm. ODR also allows gaining trust in a measurement
when no uncertainty is detected, and the surface profile reconstructed from subsamples
100 % reflects the actual surface profile.

1.4 Structure of the Work
In Chapter 2 the current state-of-the-art in geospatial visualization and terrain streaming
is presented. A summary of the advances of high-level game engines in recent years, and
how they were adopted to reduce development time and costs in game development, and
other fields, is given. An overview of the state-of-the-art terrain representations used in
GIS is given, and their benefits and drawbacks are highlighted.
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1.4. Structure of the Work

The terrain streaming rendering algorithm proposed is presented in Chapter 3. The used
data structures, implemented serialization methods, the used origin shift and algorithms
and metrics for LOD selection and streaming are explained.

The algorithm for measuring in a streamed environment is given in Chapter 4. The
two-phase algorithm for asynchronous ray casting against streamed colliders, the Shared
Edge Detection termination criteria for polyline subsampling and the On-Data Ratio
metric for uncertainty, are covered.

In Chapter 5 the implementation utilizing Unity’s DOTS is presented. The Ordered
Point Cloud (OPC) format, which is the format of all input data, is explained. The
streaming and GPU-optimized binary format, called Renderable Blob format, all data is
preprocessed into, also is explained.

The results are presented and discussed in Chapter 6.

The conclusion can be found in Chapter 7, where the thesis and gained insights are
summarized and a few selected options for potential future research are highlighted.
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CHAPTER 2
Background and Related Work

In this chapter, an overview of the current related and ongoing research, methods
and available software focused on digital terrain surveying and analysis, rendering
large-scale terrains, general-purpose raycasting and spatial acceleration structures is
given. Furthermore, an overview on the advancements of higher-level engines and their
applications in other industries and sciences is given. Lastly the historical background of
some of these advancements is explained.

2.1 Digital Terrain Analysis
The methods of digital terrain analysis (DTA) have been significantly improved since
the development of geographical information science (GIS) systems in the 1970s. Xiaong
et al. [Xio+21] systematically analyzed the current state of research of geomorphology-
oriented DTA. They emphasized how modern remote sensing technologies allow to rapidly
and easily acquire multi-temporal, multi-level, and multiscale landform morphology digital
elevation model (DEM) data, but as DEM data only contain location and elevation
information, it can only express the surface information. However, the DEM is still
the most widely used terrain representation as it is capable of representing surfaces
well, and many DTA methods based on it are well established. DEM is only one of
multiple state-of-the-art terrain representation models. Natali et al. [Nat+13] gave a
classification and overview of multiple terrain and subsurface modeling techniques fit for
different use cases. They highlight the strengths and weaknesses of them for different
requirements, and found that none of the discussed modeling techniques was suitable for
all situations. Paar et al. [Paa+15a] showed how mesh-based terrain representation can
be used to embed sensor visualization in martian terrain reconstructions. They have used
projection of user-drawn polylines for terrain surveying. This is one of the most basic
and widely used techniques for interpretation of Digital Outcrop Models (DOM). Barnes
et al. [Bar+18] presented and evaluated their use of this technique for geological analysis

7



2. Background and Related Work

in PRo3D against terrain reconstructions based on the Mars Exploration Rover (MER)
missions. Their used file format for the Martian terrain reconstructions was the Ordered
Point Cloud (OPC) format, as this was supported by their software PRo3D. This format
was presented by Ortner et al. [Ort+11] in 2010 for arbitrary level-of-detail hierarchies.

There are several open-source GIS and DTA applications suitable for DOM interpreation
available:

Planetary Robotics 3D Viewer (PRo3D) [Prob] was released as open-source software
to contribute to open science [Proa]. It supports large-scale terrain by rendering level-
of-detail hierarchies in OPC format. It allows geomorphometric analysis via distances
and dip-and-strike. Furthermore, it is mainly geared towards planetary geologists, with
interactive tools to digitze geological features on digital outcrop models (DOMs) [Bar+16].

GRASS [GRA22] is focused on raster, vector and geospatial processing. It includes
tools for terrain and ecosystem modeling. It supports many common GIS file formats
that are supported by the GDAL-OGR library. Its features include 3D raster (voxel)
analysis, point cloud analysis, terrain analysis. Its focus is much stronger on DEMs than
on DOMs.

There also is a wide range of commercially available GIS and DTA application, with a
few important listed here:

LIME [Buc+19] supports multiple 3D and elevation models, handles massive texture
models through out-of-core level-of-detail rendering and allows DTA (dip/slope, dip
direction/aspect, brigthness/contracst, etc.). Amongst many other tools, it provides a
rich toolset for DTA for DOM.

VRGS: Virtual Reality Geological Studio [Vrg] is dedicated to geology and allows
analysis for structural and engineering eology, sedimentology and virtual field trips and
site visits. It supports point cloud data and mesh interpretations, as well as LOD
generation.

ArcGIS [3dg] is a suite of not only one, but several GIS and DTA tools. It offers a
wide range of features for map, terrain, remote-sensing, and city data. Some of them are
available as Software-as-a-Service (SAAS) platform, and several tools can be licensed as
standalone clients. It provides real-time GIS support. Most of its features are geared
towards city, map and in general DEM-based data.

Favorskaya and Jain [FJ17] provide an in-depth analysis of the state-of-the-art advances
in remote sensing and geographic information systems for both terrain and vegetation
modeling.

The DTA measurements tools in this thesis are based on the polyline-based tools for
DOM interpreation as implemented in PRo3D.

8



2.2. Large-scale terrain rendering

2.2 Large-scale terrain rendering
Rendering large-scale scenes interactively is a fundamental problem of computer graphics.
The common goal is to achieve high-fidelity representations within the given time budget.
It is challenging for all kinds of representations, such as DEM-, voxel- or mesh-based.
Each model provides different benefits, differs in its expressiveness, and optimization
techniques. In consequence, a lot of research has been conducted to optimize and improve
the rendering performance for large-scale data and widely different methods and solutions
are available.

As highlighted in Section 2.1 the choice of terrain representation is critical for digital
terrain analysis, but it also is important for the rendering performance. The efficiency
of DEM for terrain surfaces is the main reason why it is the most widely used format,
especially for large-scale terrain rendering in GIS and DTA. In many higher-level engines
DEM-, and so heightmap-based terrain is often the only type of terrain representations.
Both Unreal Engine [Unrb] and Unity [Tecf] only refer to terrains as heightmap-based
terrains and consider other meshes, regardless if they represent terrain or not, as general
meshes. To render a DEM terrain it is required to convert it to primitives supported by
the graphical processing unit (GPU), with triangle meshings being the most common
primitive. Delaunay triangulation [Del+34] is widely used and so are Real-time Optimally
Adapting Meshes [Duc+97] (ROAM). A similar CPU-based mesh refinement method was
presented by Lindstrom and Cohen [LC10], using binary trees. Other rendering terrain
rendering methods are using tiled blocks, where the terrain is partitioned into square
patches, tesselated at different resolutions. In tiled approaches seamless stitching between
blocks of different tesselation level is difficult. Another method is the use of regular grids
using geometry clipmaps, which define a hierarchy centered around the viewer [TMJ98].

Volumetric representations, allow representing not only surface, but also subsurface
information. Peytavie et al. [Pey+09] presented material layers as a two dimensional
grid alternative less computationally demanding than voxels. FarVoxels [GM05] and
GigaVoxels [Cra+09] have been approaches for ray-casting-based rendering of large
voxel-based scenes. Graciano et al. [GRF18] presented a real-time visualization system
for subsurface geological structures using a stacked layer (voxel) representation.

Another different approach to polygon- or volume-based rendering is point-cloud-based
rendering. Instead of polygonal meshes that represent a closed surface, both terrains and
objects are represented by points. All points are then rendered using basic primitives,
which allows for fast rendering. QSplat [RL00] was the first point renderer being able to
handle hundreds of millions of points. Schütz [Sch16] presented a web-based rendering
solution, Potree, which is capable of rendering hundreds of billions of points in real time
in a standard web browser. This was achieved by using a modifiable nested octree (MNO)
structure and out-of-core rendering. Schütz et al. [SKW19] also presented an in-core
solution capable of rendering point clouds fast enough for VR application. Schütz [Sch21]
presented an algorithm for fast out-of-core generation of octress for massive point clouds.

Level-of-detail (LOD) algorithms are essential for rendering large-scale geometry. Early
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pioneering work was done by Schumacher [Sch69] and a lot of improvements have been
made since then. Lindstrom et al. [Lin+96] presented a hierarchical solution to optimize
rendering of height fields. Erikson et al. [EMBI01] presented hierarchical levels of detail
(HLODs) to drastically simplify entire branches of the scene graph to support rendering
large environments. Guthe and Klein [GK04] presented an extension to streaming HLODs
for an out-of-core framework to visualize huge polygon models.

Once data sizes become larger than working set memory, out-of-core methods are required.
Lindstrom and Pascucci [LP02] presented a general framework for view-dependent out-of-
core visualization. They presented a method for efficient view-dependent refinement and
a memory-friendly indexing strategy. Varadhan and Manocha [VM02] presented an out-
of-core rendering algorithm for massive geometric environments. Their algorithm focuses
on efficient prefeteching, HLOD selection and parallel rendering and I/O management.
Amara and Marsault [AM09] presented an GPU-based architecture for terrain rendering
with the use of general meshes called Tile-Load-Map. Their architecture is focused on
performing texture selection, LOD and streaming selection and rendering on the GPU.

Parallelization is another approach for large-scale rendering. Dong [Don20] presented
a multi-gpu multi-display system for rendering large and complex 3D environments.
Distributing the workload not only across multiple GPUs, but across multiple network-
connected nodes has been researched for a long time. A networked solution for QSplat
was presented by Rusinkiewicz and Levoy [RL01]. Guthe and Klein [GK04] presented a
network-based streaming solution for HLOD. Lerbour et al. [LMG10] presented a generic
solution for rendering large terrains. Their solution is network-based and they reduce
redundancy of data by instead of duplicating it, they reuse it across LODs. By merging
and splitting LOD nodes, organized in a quadtree, based on the nodes’ importance, they
reduce loading of not relevant anymore data. Bethel (Ed) et al. [Str] give an overview
of highly parallelized rendering methods using network-based parallelization across
many networked rendering clients and methods for distributing and scaling rendering
frameworks across them, as well as utilizing GPU-accellerated rendering techniques for
high-performance rendering. In recent years, in particular cloud computing became an
active research field for rendering large-scale models. Xue et al. [XZQ19] presented a
framework for large-scale rendering of CAD models, using parallel rendering using GPU
virtualization and cloud computing.

Gobetti et al. [GKY08] provide an overview of techniques for visualizing massive models.
Favorskaya and Jain [FJ17] give an overview of the current state-of-the-art in rendering
large scenes for both terrain and vegetation.

The input scenes in this thesis are in OPC file format. The stored triangular meshes
are preprocessed into a streaming optimized custom file format. The HLOD hierarchies
provided by OPC files are used for LOD selection and streaming selection is performed
across multiple HLODs. The out-of-core streaming algorithm is based on the streaming
approach by Varadhan and Manocha [VM02].
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2.3 Ray casting and Spatial Acceleration Structures

2.3.1 Ray casting

One of the most basic algorithms in computer graphics is ray casting, also referred to
as ray shooting, or ray tracing. By following the path of an oriented half-line, called a
ray, from its origin along its direction, its points of intersection with geometry can be
calculated. Shirley presented the use of ray tracing for rendering in 1990 [Shi90]. Since
then many improved ray-tracing-based methods have been developed. A lot of research
was focused on how to improve the time complexity of O(N) for ray tracing, where N
is the number of objects, by the use of spatial accelaration structures. Havra [Hav00]
presented several techniques to reduce time and space complexity for kd-tree-based ray
tracing. Haines (Ed.) and Akenine-Möller (Ed.) [AMHH19] gave an in-depth overview of
many algorithms and optimization for high-quality real-time rendering with ray tracing.
With improving algorithms, data structures and hardware support, ray tracing became a
method not only for rendering, but also for other ray-casting-based geometric queries,
e.g., in physics simulations. The most common queries are solving visibility problems,
such as first-hit ray traversal and multi-hit traversal. In first-hit traversal the closest
point from the origin in direction of the ray is searched for, in multi-hit traversal all hit
points are desired. Wald et al. [Wal+19] presented a proof-of-concept using hardware ray
tracing for point-in-tetrahedon tests.

The presented measurement algorithm uses ray casting for first-hit traversal. This is used
for the projection of polylines for feature and subsample selection.

2.3.2 Spatial Acceleration Structures

Spatial acceleration structures (SAS) are essential for achieving real-time performance
for many rendering and physics related algorithms. They are used for node traversal in
sublinear time and are important for LOD hierarchies. This is achieved by structuring
objects based on position, extents and/or geometry in hierarchical data structues. Since
Bentley [Ben75] presented multidimensional binary search trees to improve searching in
database in 1975, there has been a lot of research on appliances of acceleration structures
for computer graphics algorithms. The two most common types are bounding volume
hierarchies (BVHs) and variants of binary space partitioning (BSP) trees. For brevity,
only a few selected historical highlights are listed, without downplaying the important
role many of the ommitted algorithms and datastructures had historically.

Clark [Cla76] presented hierarchical structures for geometric models to improve visible
surface detection. Meagher [Mea82] presented the use of octress to encode arbitrary
geometric models in 1981. Hanan [Sam84] presented quadtrees and many quadtree-related
algorithms as general data structures to support image processing, geographic information
systems, and robotics, in their survey in 1984. Klosowski et al. [Klo+98] presented an
algorithm for collision detection using bounding volume hierarchies in 1998. Gobetti et
al. [BHH15] presented an incremential approach for BVH construction for ray tracing in
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2015. Zellmann [Zel19] gave an overview of state-of-the-art hierarchical data structures
for volume rendering with empty space skipping in 2019. Yesantharao et al. [Yes+21]
recently presented a parallel batch-dynamic kd-tree, called BDL-tree, in 2021. Meister
et al. [Mei+21] presented a recent survey of the state-of-the-art in bounding volume
hierarchies for ray tracing in 2021.

Overall, different SAS excel for different paramters. Some of the most important parame-
ters are the following:

• Performance of algorithms for querying the SAS [GD21].

• Type of queries performed against the SAS [Laz+21; Wal+19].

• Storage and memory efficiency [EBN13; Hua+20].

• Duration to build or update the SAS [Sch21; WH06].

• Availability of algorithms parallelized across multiple CPU [Wan+20], GPU [Hor+07;
SOW20] or cluster-based architectures [JSW22].

• Support for static or dynamic (animated or deformable) geometry [Jia+20].

• Type of geometry or volumetric representation (2D, 2.5D, triangular, point cloud [EBN13;
Sch21], volumetric and implicit isosurfaces [QLX21; Str+20; Wan+20]).

The cost of network-based solutions or HPC environments justifies the research of
algorithms that also are efficient enough for commodity hardware or even restricted
environments, such as mobile platforms.

The interested reader is referred to Ericsons [Eri04] book Real-time collision detection for
detailed information and implementation examples of data structures and algorithms for
real-time collision detection. Spatial acceleration structures of various types are covered,
as well as many optimizations for cache-aware algorithms. Complementary information
also can be found in the book Real-Time Rendering by Akenine-Möller et al. [AMHH19].
There they give an in-depth explanation of different spatial acceleration structures and
implementations for rendering are provided. The overlap in content shows how relevant
SAS are for algorithms for both rendering and physics.

In this thesis, Havok for Unity and raycasting against its AABB-based bound volume
hierarchies were used [Unia; Unib; Unih; Uni19].

2.4 Higher-Level Engines
Higher-level engines provide implementations for commonly required datastructures
and algorithms. 3D game engines in particular provide functionality for both efficient
rendering of mesh-based data and physics, as both are central requirements for many
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games. The abstraction to a general purpose usually comes at the drawback of being
less efficient for the specialized tasks in science. However, with recent advancement
higher-level engines have found usage in a wide range of industries and are becoming a
reasonable basis in more and more applications other than games. The most widely used
higher-level game engines, which also are available to the public, are Unreal Engine [Unrc]
and Unity [Uni22].

With the games’ industry being a driving factor for Augmented Reality (AR), Virtual
Reality (VR) and Extended Reality (XR), games engines are becoming the foundation
for XR-based visualization. Hilfert and König [HK16] presented a low-cost virtual
environment using Unreal Engine. Medeiros et al. [Med+22] presented an application for
VR-based tactical resource planning using Unity.

Advancements in visual quality and functionality made using higher-level engines a practi-
cal solution in the movie industry. Sony Pictures Imageworks [Unra] used Unreal Engine
to shorten the prodcution time of their series Love, Death & Robots, by reducing the delay
between movie shot and seeing high-fidelity visuals. The Walt Disney Company [Bri19]
used Unity for the production of the movie The Lion King, by utilizing its multiplayer
VR functionalities to bring director and staff into the scene to help with framing.

Karis et al. [KSW21] presented Unreal Engine 5’s new virtual geometry system Nanite [Nan]
which achieves state-of-the-art high-fidelity real-time rendering for rigit geometry. They
achieve this through fine granularity streaming on the level of mesh simplification groups,
called cluster groups. All LODs are structures as HLOD. Each cluster group is as small
as the smallest grouped result during mesh simplification. This way a streamed in group
can be as small as a dozen triangles. Nanite uses a disk compressed format for storage
and a memory and bandwith optimized layout for rendering. Combined with a wide
range of other optimizations ranging from GPU-based culling, sparse updates, deferred
materials and material culling. Their streaming approach allows for a fine granularity on
the size of cluster groups.

Yao et al. [Del+21] presented a rendering algorithm for large-scale terrain in Unity
using concurrent binary trees. Concurrent Binary Trees were presented by Jonathan
Dupuy [Dup20] as a datastructure for parallel subdivision. It supports parallel refinement
and construction of the bounding volume hierarchy. By using integer bitfields the sum-
reduction tree is stored compactly and recursively at each higher level of the hierarchy.

Accessiblity to functionality is important in open science, where the goal is to make it as
easy as possible to collaborate across fields. Ruzinoor et al. [Mat+14] reviewed the use
of game engines for 3D terrain visualization of GIS data and concluded that they have a
vast potential for customized applications to make GIS data available in a wide range
of fields. Zarco et al. [Zar+21] compared 24 game engines and evaluated both Unreal
Engine and Unity for robotics visualization. They conclude that the most evident benefit
is the high versatility of both enginges for creation of visualization interfaces, but that
further studies regarding the physical simulation accurateness of the underlying physics
engines are required, as they have not examined it yet. Nesbit et al. [Nes+20] evaluated
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the use of higher-level engines for visualization and sharing of high-resolution 3D data
sets and 3D digital outcrop models. They also presented a case study for three different
approaches to develop and share such visualizations with frameworks such as Sketchfab,
Potree and Unity to verify their usefulness in promoting open science.

The underlying physics engine is often a central component in higher-level engines. As
stated in Section 2.3.2, this work relies on Havok for Unity. Hummel et al. [Hum+12]
evaluated Havok in 2012 against other open source physics engines and concluded that it
was optimized for speed, at the expense of accuracy in some of their benchmarks. This
observation was confirmed by Erez et al. [ETT15].
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CHAPTER 3
Rendering

This chapter covers the rendering techniques used to implement large-scale terrain
streaming for Visionary. It describes the scene structure and optimizations used.

3.1 Overview
Visionary streams large-scale terrain scene stored in Renderable Blob file format.

The source scenes used for this work are in OPC format and are structured in one to
many hierarchical levels of detail (HLOD). Erikson and Manocha [EM98] proposed the
use of HLOD to perform simplification culling. Their initial work and later improvements
by Erikson et al. [EMBI01] focused on the automatic generation of HLODs from sets
of geometry with LODs. As the OPC scenes already contain preprocessed HLODs, the
generation of HLODs is a prerequisite. In contrast to Erikson et al.’s work, the scenes are
structure into multiple HLODs, instead of a single one. This is due to the partitioning
into multiple OPC hierarchies for large scenes as presented by Ortner et al. [Ort+11].
Guthe and Klein [GK04] presented the application of HLODs for an out-of-core and
network-based visualization framework to render huge polygonal models. The presented
streaming algorithm is based on their asynchronous streaming of HLODs over multiple
frames, but a different metric for (H)LOD selection and a different parallelization scheme
is used.

3.2 Streaming
Streaming is an out-of-core processing technique. Out-of-core processing is required when
the data is larger than the available memory. By swapping data from slower storage
with data in-memory, an otherwise too large dataset can be processed in smaller than
memory-sized chunks. Applied to rendering, this means nodes that contribute little to the
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rendered image will be streamed out, while nodes that contribute more will be streamed
in. This way, all elements rendered at a time fit into memory, while the dataset as a
whole might be substantially larger. A streaming algorithm is presented that supports
large-scale multi-layered terrains, multiple hierarchical levels-of-detail (M-HLOD) and
measurements on streamed terrain surfaces. Axis-Aligned Bounding Boxes (AABB) are
used as bounding volumes and the distance between the AABB of the root element of
each HLOD and the viewer is used as metric to decide which HLOD should be streamed
in, and which should be streamed out. A configurable limit is used to define how many
HLODs are kept in memory at once. Only HLODs that are currently streamed-in are
processed in later stages.

In this thesis, the rendering of large-scale terrains presented in Pro3d [Prob] is extended by
streaming across multiple HLODs (M-HLOD). A similar out-of-core solution for fast dis-
play of massive geometric environments was presented by Varadhan and Manocha [VM02].
Their concepts of calculating a rendering front, which is a cut through the scene graph,
with integrated simplification culling and view-frustum culling are applied to M-HLODs
for efficient independent, asynchronous and parallel streaming. The implementation de-
tails for the used binary and streaming optimized Renderable Blobs format are discussed
in Chapter 5. Results and a performance comparison to PRo3D are shown in Chapter 6.

3.2.1 LOD

Terrains of interest are often larger than the available memory. Splitting the data into
multiple tiles to process only a few at a time is one option. However, in visualization it
is often desired to see all tiles at once, and displaying lower-resolution versions instead is
a solution to achieve this [Sch16]. In this thesis, both approaches are combined, with
tiled streaming across M-HLODs and LOD selection for currently active HLODs.

3.2.2 HLOD

Hierarchical scene structures to optimize visible surface detection were presented by
Clark [Cla76] as early as in 1976. Erikson et al. [EMBI01] presented an algorithm for
dynamic construction of HLODs to improve rendering performance for large environments.
In contrast to their dynamic HLOD construction, this work preprocesses the raw terrain
data into a GPU-optimized format and relies on the hierarchy from the input files. A
similar method of preprocessing as optimization for GPU-based terrain rendering was
presented by Zhai et al. [Zha+16]. They utilize quadtrees and their implicit parent-child
relationship via indices to optimize for mesh simplification and GPU-based parallelized
tesselation for DEM-based terrain rendering. The generic tree hierarchies presented
in this thesis are designed for multi-resolution hierarchies of generic triangular meshes
and DOM-, instead of only DEM-based terrains. This allows to model arbitrary mesh
hierarchies. In contrast to their logical tree structure, indices are stored instead of
pointers. Pointers to arrays containing the child indices are used, as the number of
child nodes in a generic tree hierarchy is unbounded, where it is always exactly four in
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a quadtree. The presented structure use indices over pointers to densely pack them in
CPU-cache-friendly layout. The requirement to store pointers for the array of children is
not cache friendly during the total HLOD tree traversal. However, when the children of
a node or level are fetched, iteration is cache-optimized again. The presented streaming
algorithm uses this by processing the tree level by level.

Node index i allows efficient lookup of all related data via aligned arrays. The data of
any node i is stored within an array of the appropriate data type at index i within the
hierarchy. Index 0 refers to the root node, with −1 indicating no further parent index. As
in the original description of the HLOD structure by Erikson et al. [EMBI01], the finest
HLOD is labeled HLOD 0 and the coarsest is HLOD N . In contrast to their work, no
dynamic refinement or HLOD creation from LOD trees is performed, as discrete (H)LODs
as decribed by Luebke et al. [Lue+02] are used. Ortner et al. [Ort+10] presented how
the LOD levels in OPCs are spatially enclosing their child levels, as higher levels are
created bottom-up by simplification of multiple lower level nodes. The streaming and
LOD selection algorithms in this thesis utilize this property. Figure 3.1 shows an example
of the used HLOD hierarchy in tree and array representation.

(a) Tree representation of a two level deep
HLOD.

(b) The indices per level are stored to efficiently
process nodes level bylevel.

(c) The parent indices are stored in a cache
friendly and densely packed array.

(d) Arrays of child indices are stored to efficiently
iterate over the children of each node.

Figure 3.1: Example of a HLOD 2 in tree and array representation. The densely packed
indices allow CPU cache optimized traversal of the HLOD tree. The white HLOD 0
nodes contain the finest LOD. The orange HLOD 1 are one level coarser. The coarsest
root node is highlighted in red.
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3.2.3 Multi-HLOD

Both Erikson et al.’s [EMBI01] original HLOD structure and Guthe and Klein’s [GK04]
extension to streaming use a single HLOD structure per scene graph. They focus on
merging geometry on higher HLOD nodes for efficient LOD algorithms. This work refers
to M-HLOD as a set of HLODs. M-HLODs are used based on the scene partioning of
OPC as described by Ortner et al. [Ort+10]. This is beneficial for parallel streaming, as
each HLOD can be processed independently. With multiple root nodes, a valid rendering
front, which must be a complete cut through the scene graph, can be guaranteed, without
evaluating other children of the global root. All operations performed on the HLOD are
then performed in parallel and independently across all HLODs. The only dependence is
through shared resources, such as memory. M-HLOD is in particular useful for multi-
resolution data, where lower-resolution HLOD data of the same terrain surface is enriched
with higher-resolution HLOD from higher-fidelity data sources. Scenes are partioned both
spatially and raster-based, but also across data quality layers. The rendering performance
is increased by unloading not required HLODs altogether. This is equivalent to splitting
a single HLOD into multiple HLODs, and allowing some subtrees this way to be streamed
out.

3.2.4 LOD Streaming

Luebke et al. [Lue+02] give an overview of different LOD selection methods and emphasize
the importance of the choice of position for distance-based LOD selection. The algorithm
presented in this thesis uses the Euclidean distance between the position of the viewer
(camera) and the closest point on the bounding volum. AABBs are used as bounding
volumes due to their highly efficient representation and simplicity. Each AABB can be
represented by only 24 bytes in single-precision floating-point format. The alignment
with cardinal axes also allows for efficient geometry-based tests against them, as most
tests can be performed against the slabs forming the AABB.

The LOD metric is evaluated once per frame for all roots, and once after each completed
streaming request for all other candidates. The LOD metric for the root node is used for
both streaming selection and LOD selection. Reusing it allows evaluating it only once for
both phases. The required memory is kept within fast physically available memory by
streaming out far away HLODs altogether. The LOD selection algorithm tries to avoid
paging altogether. For each streamed-in non-culled HLOD, at least the coarsest node,
the root, is required.

To perform streaming selection for streamed-in and streamed-out hierarchies efficiently,
their AABBs are kept in memory at all times. This is used as the basis for the measurement
algorithm presented in Chapter 4 as well. The memory required for all AABBs is
insignificantly small compared to the large-scale terrain scenes. Streaming in bounding
volume hierarchies was accordingly not necessary. The spatial enclosing property of the
root node’s AABB is used to decide if an HLOD is to be streamed in or out. If the
viewer is close to the AABB, it is considered close to the encapsulated terrain surfaces.
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Every frame the streaming selection is performed. All HLODs are ordered by priority,
and low-priority HLODs are streamed out. Not yet streamed-in HLODs are streamed in
parallelly. Streaming HLODs out and freeing the occupied memory can be considered
an almost instant operation. However, streaming HLODs in, allocating memory, and
initializing objects is slow, as it involves in particular reading data from slower bulk
storage and copying data across the memory hierarchy. As with Guthe and Klein’s [GK04]
solution, no geometry is loaded during traversal to collect currently rendered nodes. In
consequence, streaming and rendering can be performed completly asynchronously and
in parallel. Points of synchronization are required during object destruction, to free the
memory, object creation and initialization. As with their approach, loading is allowed to
span over multiple rendered frames. This is necessary to achieve interactive real-time
rendering.

Guthe and Klein’s [GK04] prefetching algorithm for HLOD streaming only considers
levels one level higher or lower than the currently rendered node. This reduces visible
artifacts caused by rapid LOD changes, as only an iterative change from one level to the
next is allowed. Varadhan and Manocha [VM02] prefetch multiple levels of ascendants
and descendants. As this work is focused much more on the performance of the streaming
algorithm, changes between multiple levels are allowed as in their work. This reduces
unecessarily streaming in LOD levels by skipping intermediate streaming operations.
However, it is impossible to completly avoid loading unecessary nodes, as during fast
movement of the viewer, any arbitrarily defined close neighbourhood around a node could
be left. When the viewer leaves the neighbourhood before loading has finished, any node
can become unecessary before being available. An extreme example is instantaneous
movement (teleportation) of the viewer from the highest priority area to the lowest
priority area. This breaks any temporal coherence between frames and makes caching
and prefetching challenging. Allowing arbitrary jumps between LOD levels is undesirable
in immersive real-time rendering scenarios, e.g., for movie production or video games,
where seamless transitions between LODs are important. In non-immersive visualization
scenarios, e.g., digital terrain surveying, smooth LODs are a desired, but not a critical
requirement. The proposed algorithm could be restricted to a single level of refinement per
iteration. Figure 3.2 shows how M-HLODs are processed independently, asynchronously
and in parallel, with one rendering front calculated per streamed-in HLOD.
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Figure 3.2: Streaming multiple HLODs allows for independent, asynchronous and parallel
processing. All HLODs up to a priority limit are streamed in, and all others are streamed
out. Green nodes are currently loaded. Orange nodes are currently loading.

Asynchronicity and Parallelization

Interactive applications require at least 20 frames per second to be considered interactive,
which results in a time budget of at most 50 ms per frame. To put this duration into a
context, an m.2 NVMe SSD with 2000 MB/s sequential read performance could read at
most 100 MB per frame. At a 4k random access performance of 35 MB/s, this reduces
to only 1.75 MB per frame. This shows how important an efficient memory layout on
disk is. As processing and rendering of large-scale terrains also requires significant time,
these ideal numbers are reduced further. Asynchronous processing across multiple frames
is is for this reason a necessary requirement for streaming of large-scale terrains. This
becomes even more drastic environments with a main-thread-model, such as Javascript,
where most operations are restricted to a single main thread [Sch16].

Almost all modern systems have multiple cores. Parallelizing the workload across all cores
and threads is consequently required to utilize the available hardware to its fullest capacity.
Streaming and LOD hierarchies are both well suited for parallelization. Streaming of
independent hierarchies can be performed in independent threads. Loading of independent
LOD nodes can be performed in parallel the same way. The large number of processed
elements in large-scale terrains is ideally suited for parallelization. GPUs also offer a high
degree of parallelization. Yangzi [Don20] presented a multi-GPU framework for scalable
real-time rendering for extremly complex 3D environments. Wald et al. [Wal+19] showed
how hardware ray tracing can be utilized for tet-mesh point location in large data sets.
Haidar et al. [Hai+18] showed how the high degree of parallelization in GPUs is beneficial
for general high-performance computing (HPC).

The algorithm presented in this thesis is designed to work in environments with a
single main thread and support for multithreading. In main-thread-based environments,
creational and destructive operations are restricted to this single main thread, but multiple
threads are available for other operations. Asynchronous multithreaded parallelization
is accordingly possible as long as a context switch to the main thread is performed
before continuing with any restricted operations. Long-running operations, potentially
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much longer than four frames, such as file access, are offloaded to pooled threads.
Managed pooled threads reduce resource exhaustion by spawning only a limited number
of threads and distributing the work across them. A job system is used to parallelize
computations across large numbers of similar computations. Jobs are short running
operations restricted to complete within at most four frames. This restriction allows to
optimize their memory allocations for speed over avoidance of memory fragmentaion.
The rendering is performed in parallel on the GPU, but is initiated in the main thread,
where completion is awaited blockingly. The streaming of LOD nodes for rendering is
decoupled entirely from streaming the geometry used for the measurement algorithm
presented in Chapter 4. This allows to perform the two most expensive types of work in
parallel. Figure 3.3 visualizes the multithreaded design.

Figure 3.3: Work is distributed across pooled threads for long-running operations and a
job system for short-running asynchronous operations. Completion of all parallelized work
is observed on the single main thread, where rendering is initiated, and its completion is
awaited. The work on pooled thread 1 has not yet completed. The work on job system
thread 2 is forced to complete after four frames. Only two threads for each the job system
and the thread pool are shown, but many more can be spawned.

3.2.5 LOD Selection

LOD selection is a problem since the introduction of LODs, and different algorithms
have already been evaluted in 1998 by Reddy [Red98]. The proposed algorithm uses
both a distance metric and LOD ranges for discrete LODs as presented by Luebke et
al. [Lue+02]. The Euclidean distance between the closest point on the bounding volume,
in this case the AABB, is used. This metric is used both for streaming selection and
LOD selection. For streaming M-HLODs, only the distances to the root node of each
HLOD is taken into account, and for LOD selection within a streamed-in HLODs the
distances to all AABBs are considered. The distance metric is updated every frame, but
only sparsely for nodes which are not already covered or culled by higher level.
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Guthe and Klein [GK04] also use the closest point on the bounding volume of the current
node for their view-dependent prefetching, but do not specify how they treat enclosement
of the viewer. In particular, when single nodes of a large-scale terrains span across
large distances, it becomes highly likely that the viewer is enclosed by the AABBs of
an arbitrarily oriented terrain during a close-to-surface flyover, and thus a solution is
required. In this thesis, the highest resolution data is requested in this case. This is a
suitable solution if the viewer is enclosed by a small subset of bounding volumes at most.
If the viewer is expected to be enclosed by all bounding volumes, a different solution for
spatial acceleration structures is required, as culling would lose its efficiency.

The benefit of hierarchical spatial acceleration structures is that decisions can be made
on fewer higher up nodes. When any ascendant can be culled, all of its descendants can
be culled as well. A top-down tree traversal is used to decide level by level if a node is
sufficient according to the LOD criteria, or is required to be refined by replacing it with
its children. The culling information is propagated from top to bottom. No matter if a
node is culled by view-frustum culling or culled because it is covered by any ascendant, it
is removed from the rendering front and streamed out. A node is considered sufficient if:

• the distance between the viewer and its AABB is larger than the LOD distance
dLOD of its LOD level,

• there is insufficent free memory left to replace the node with its children,

• or it is a leaf.

A node is culled if:

• its hierarchy is not streamed in (streaming selection),

• it is not within the view-frustum (view-frustum culling),

• or any ascendant is culled (simplification culling [VM02]).

In immediate rendering of scene graph based scenes, tree traversal can be terminated
once a subtree is covered or culled. Varadhan and Manocha [VM02] used the top-
down traversal method for calculating the rendering front for HLODs as presented by
Erikson [EM98]. This is the recommended traversal order to best utilize the hierarchical
properties of HLODs. However, in stateful rendering pipelines and streaming scenarios,
the full tree needs to be traversed to deactivate or stream out nodes that were visible
during the previous frame. Guthe and Klein [GK04] split traversal from loading and
unloading geometry to support asynchronous LOD selection over multiple frames. This
separation also is used in this thesis, to achieve asynchronous, independent and parallel
LOD selection and streaming.
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The result of LOD selection is a rendering front. A rendering front is a complete cut
through the LOD tree. A cut is complete when any non-culled subtree is covered by
exactly one node.

The proposed algorithm calculates the rendering front by descending level by level. This
allows to parallelize across all nodes of all LOD trees of the same level. It is not only
parallelizable per HLOD, but across all HLODs of the same level. At each evaluated
node, all LOD criteria are evaluated. First it is verified if the subtree is already culled or
covered. If a leaf is reached, it is sufficient. Otherwise, the LOD critera are evaluated for
this node. Once all nodes of a level are evaluated, the LOD selection continues with the
next level. Figure 3.4 visualizes a potential LOD selection traversal and the resulting
rendering front.

(a) Level 0. The root node i is
not selected, e.g., because the
camera is too close.

(b) Level 1. Node g is selected
as sufficient, e.g., because the
camera is far away. Nodes f
and h are not selected, e.g, be-
cause the camera is too close.

(c) Level 2. The leaves a, b, e
are selected as mandatory. The
nodes c and d are already cov-
ered by g.

Figure 3.4: Example of the resulting render front (green line) calculated by the presented
algorithm. The level processed is shown dashed. Nodes are processed level by level.
Nodes selected are shown in green. Nodes not selected are shown in red. White notes
have not been processed yet.

LOD Range

LOD ranges are used to select the distance dLOD at which a level is considered sufficient
over their finer children. The range distance is increased exponentially, with a small
constant base b > 1. In this thesis, b = 1.25 was chosen. A node at depth d is considered
sufficient if it is further away than the LOD range rd. A hysteresis of h = ±dLOD ∗ 10%
was chosen. As dLOD = 0 is valid, and equivalent to restricting the range to the AABB, a
minimum hystereis hmin = 1 is enforced. The 10% were selected based on experimentation
and as suggested by Luebke [Lue+02] according to Astheimer and Pöche[AP94]. The
distance per range rd is calculated as follows:
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rb = bd ∗ dLOD (3.1)
h = max(hmin, rb ∗ 10%) (3.2)

rd = rb ± h (3.3)

Reactive Targe Frame-Rate Scheduler

To maintain a constant and steady frame rate, a fixed frame-rate scheduler can be
used [Lue+02]. A fixed frame-rate scheduler increases or decreases the LOD to achieve
a fixed-frame rate. In this algorithm, a target frame-rate range was used. It adjusts
the LOD distance dLOD to stay within a target range of render time. The scheduler
is reactive, as its decisions are based on the average render time tavg over the last N
seconds, in contrast to a predictive scheduler, which tries to predict how much work
can be done per frame [Lue+02]. When rendering is fast, finer LOD levels are selected,
and when rendering becomes slower, coarser LOD levels are selected. The scheduler
decreases the LOD distance dLOD when the average render time increases beyond the
maxmimum targeted render time tmax. This causes coarser LOD nodes to be accepted at
closer distances, and consequently reduces the amount of data to be rendered. Inversely,
the scheduler increases the LOD distance dLOD when the average render time decreases
below the minimum target render time tmin. This forces finer LOD nodes to be selected
at larger distance, and consequently increases visual fidelity.

A target frame-rate scheduler should react quickly, but a large change in LOD distance
can cause resonance. A scheduler is resonating, when every change leads to another
change. At the granularity of decisions the scheduler can make, it is possible that there is
no decision where the system can stabilize. A finer level could cause too much work load,
and the coarser workload could underutilize the system. The implemented scheduler for
this reason tries to make as few decisions as possible by selecting a target render time
ttarget as far from tmin and tmax as possible. This corresponds to the mean value:

ttarget = tmax − tmin

2 (3.4)

The scheduler calculates the reactive LOD distance dLODr based on the average render
time tavg. It tries to adapt the workload to achieve the target render time ttarget. As
changing the LOD distance potentially causes large changes in LOD selection, and thus
many new finer nodes to be streamed in, the frame rate can drop quickly due to decisions
by the scheduler. A spike in render time can be caused by external factors on the system
on which it is running. For this reason, drastic changes are avoided, and multiple finer
granular ones preferred. This gives the system sufficient time to recover from large
changes, reduces resonance, and stabilizes the frame rate. The following methods are
used to dampen reactions of the scheduler:
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• The average render time tavg over the last N seconds is used to avoid reacting on
single slow frames after a change.

• Decreasing dLOD to the minimum is allowed to happen during a single frame, to
quickly achieve interactive frame rates if they become low. It is much better to
keep interactivity while increasing fidelity, than having high fidelity, but loosing
responsiveness.

• Increasing dLOD is limited to avoid loading more data than the system can handle
at once.

• A 10% hysteresis th is used to reduce flickering around critical distances.

The ratio between tavg and ttarget is used to scale the change of dLOD. The LOD distance
target range drange is the difference between the maximum LOD distance dLODmax and
the minimum LOD distance dLODmin .

When tavg is greater than ttarget ± th, the LOD distance dLOD is reduced as follows:

tr = tavg

ttarget
(3.5)

dLOD = dLOD/tr (3.6)

When tavg is smaller than ttarget ± th the LOD distance dLOD is increased as follows:

dδ = drange ∗ 0.1 ∗ tr (3.7)
dLOD = dLOD + dδ (3.8)

Memory Limitation

When large-scale datasets are handled in real-time rendering, available resources need to
be considered. Operating systems are able to provide additional memory via paging up
to a certain degree, but access to paged memory residing on disk storage is significantly
slower. Historically, paging was only available for CPU memory, but nowadays also
is available for GPU memory [lorb]. To avoid paging altogether, memory allocations
must be managed carefully. Memory management is a highly complex task, as many
factors other than the physical size of the data are relevant. Memory fragmentation and
ephemeral copies can significantly increase the actually required memory. Steinberger
et al. [Ste+14] proposed a custom allocator for block memory management to efficently
generate and render infinite cities on-the-fly. The presented algorithm works on a higher
level, leaving allocations to the underlying frameworks and subsystems. However, it
tracks memory reservations for LOD nodes, to ensure sufficient memory is available to
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avoid paging. Refinement of a node is restricted such that a refinement is only allowed if
sufficient memory for all children can be reserved. It is not a necessary requirement that
the children of a node require more memory than their parent, but it can be assumed for
the purpose of LOD due to the simplification. Figure 3.5 visualizes an example where a
node cannot be further refined because its children would require more memory than
available.

(a) Node i is currently loaded and tested for
refinement with descendants f, g and h.

(b) Node i (green) is currently loaded and its
memory reserved. Free memory is available.

(c) There is insufficient memory to replace node
i with its descendants f, g and g.

(d) Replacing node i with its children f, g and h
would require more memory than available.

Figure 3.5: Example of a node i that cannot be replaced by its children f , g and h, as
their combined memory exceeds the available memory.

The memory required per node and its children is static and for this reason precalculated
and stored in its hierarchy. The required memory of a node i is mi. The required memory
of its children is mc(i). With current reserved memory mr and a memory limit of mmax,
the LOD decision mLOD of the memory scheduler can be calculated as follows:

mLOD =
{

0, if mr −mi + mc(i) <= mmax

1, otherwise
(3.9)

When mLOD = 1 a node is considered sufficient, and no further refinement is allowed.
Figure 3.6 shows how both the memory requirement mifor the node, and the memory
requirement mc(i) for its children are stored in the hierarchy.
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(a) The hierarchy stores the memory required
per node.

(b) The summed up memory of the children are
stored per node.

Figure 3.6: Example of how the hierarchy stores the required memory of each node and
the sum of required memory of each node’s children. The values shown in each node are
example memory units, e.g., megabytes.

3.3 Priority Rendering
This work refers to multi-layered terrain, when multiple layers of data are available for
the same terrain and meant to be visualized within the same context. Examples for this
are data layers from different data sources and reconstructions. While LODs are a form
of multiple quality layers, they are not shown at the same time, and are consequently
not referred to as multi-layered data.

Visionary supports multi-layered terrain via priority rendering. Each data layer is
assigned a priority, and higher priorities are rendered above lower priorities. Paar et
al. [Paa+15b] showed this technique for data fusion in their viewer of the PRoViDe
(Planetary Robotics Vision Data Exploitation) project. The visualization software PRo3D
by Traxler and Ortner [TO15] is the component of the FP7-PRoViDE tool set where
they have implemented this method for priority rendering. They have used this method
to fusion the data between orbiter and rover image products for visualization of Martian
terrain.

Data of higher-priority layers is considered of higher quality for all cases. However,
visualizing both at the same time can help to understand the context better. An example
is the visualization of a high-fidelity outcrop rendered at its positions within a much
larger and lower-fidelity terrain. Figure 3.7 visualizes how a higher-quality layer can
enrich the quality of the overall data, even if it is only available for a subsection of the
terrain.
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(a) Example of a simplified terrain with low
fidelity and assigned to priority layer 0. In
the first render pass, only priority 0 data is
rendered from the perspective of the viewer
in the top left.

(b) In a second render pass, the data of prior-
ity layer 1 (purple) is rendered. It occludes
even the mountain peak that would protrude
through the priority 1 surface without pri-
ority rendering (dashed).

Figure 3.7: Example of priority rendering. The higher-quality data (purple) improves the
quality of the terrain surfaces, altough it is only available for the left of the two mountain
peaks shown.

Priority rendering is achieved trivially in Visionary by using multiple render passes. As
each priority layer consists of its own M-HLOD, all streaming and LOD selection can
be performed just as if only a single priority layer would exist. The only additional
requirement is one additional render pass per priority layer. After each render pass, the
Z-Buffer is cleared to ensure correct depth testing within each layer, but overdrawing
all lower-priority layers. The measurement algorithm presented in Chapter 4 correctly
respects the priority of all layers. The resulting images are shown in Chapter 6. The
engine-specific implementation for priority rendering via camera stacking is explained in
Chapter 5.

3.4 Origin Shift
The coordinates of large-scale terrains can exceed the precision supported by single-
precision floating-point values. While graphics cards have been supporting double-
precision for a long time [NA11], single-precision floating-point formats have, for perfor-
mance reasons, remained the de facto standard in real-time rendering. Floating point
numbers are usually represented according to the IEEE 754 standard [Iee]. This means
that single-precision floating point formats use 32 bits and double-precision floating
point formats use 64 bits. Even if a CPU or GPU instruction requires the exact same
amount of cycles for both types, the double-precision format will still require twice the
memory. This means that only half as many values fit into each cache line and vectorized
code has to perform twice as many iterations. In performance-critical applications, such
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as streaming large-scale terrain, it is for this reason desired to avoid double-precision
operations for any type of large data.

The use of single-precision floating-point formats can cause visual errors, as only 6-9
significant digits are supported. As floating-point formats are most precise around 0,
this error becomes larger the further the values are from 0. Spatial jittering is the result.
Spatial jittering is a kind of error where the representable positions closest to each other
drift visibly apart. Figure 3.8 shows how significant the precision errors of single-precision
floating point formats for large coordinate data can become.

(a) Spatial jitter can cause LODs to drift apart
in single-precision.

(b) Using double-precision can close the visible
gaps.

Figure 3.8: Example of visible spatial-jitter due to insufficient precision by using single-
precision floating point formats for large-scale coordinates. The stretched distortion in
both images is a result of the stereoscopic reconstruction and not caused by the precision.

A coordinate system transfer is used to render geometry with large-scale coordinates.
This allows to render geometry from large-scale coordinate systems while still using the
faster single-precision floating point formats. A new origin is selected close to the rendered
scene, hence the method is called origin shift. All coordinates are then transformed in
relation to this origin, which causes large position values in the spatial transformation
matrix to cancel each other out. This is performed in double-precision. An example of
this effect on the local-to-world transformation matrix M will be discussed below. The
translation component of the transformation matrix is chosen as origin o⃗. The shifted
transformation matrix with respect to origin o⃗ is Mo:
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M =


. . . . . . . . . x = −2480530.654326382
. . . . . . . . . y = 2301535.936282250
. . . . . . . . . z = −250192.728987073
. . . . . . . . . . . .

 (3.10)

−→o =

x
y
z

 (3.11)

Mo = M−


0 0 0 x
0 0 0 y
0 0 0 z
0 0 0 0

 =


. . . . . . . . . x− x
. . . . . . . . . y − y
. . . . . . . . . z − z
. . . . . . . . . . . .

 =


. . . . . . . . . 0
. . . . . . . . . 0
. . . . . . . . . 0
. . . . . . . . . . . .

 (3.12)

This way the position components x, y and z are reduced to smaller values closer to
(0, 0, 0) and can be more precisely represented by single-precision formats. While there is
no way to overcome the limitations of lower precision altogether, the goal is to reduce
the errors to insignificant levels. Thorne [Tho05] presented a floating origin algorithm to
reduce spatial jitter due to precision for large distributed virtual words. By placing the
viewer at (0, 0, 0) and moving the scene in relation to this position, the same effect is
achieved. In this thesis, only a single origin shift is performed, as no scene was sufficiently
large to require updating the origin per frame. By running the origin shift once per
frame, with the viewer shifted to (0, 0, 0), the algorithm could be extended to a floating
origin model. The origin shift requires the resulting values of the shown measurement
algorithm in Chapter 4 to be shifted inversely by +o⃗. This also needs to be done in
double precision.

3.5 Problems and Considerations
In this section, problems, artifacts and considerations about the presented streaming
algorithm are discussed.

3.5.1 LOD Selection

The LOD distance metric is cheap to evaluate, but view-dependent or screen-error
metrics could improve the quality of the final image. Continuous LOD could further help
to smooth LOD transitions. As memory tracking is not trivial, the memory tracking
heuristic strongly relies on assumptions of the in-memory size based on the file size. To
avoid resonance of the reactive target frame-rate scheduler, magic numbers as dampening
factors were used, for the number of seconds to smooth the average frame rate and the
weighting of how much to increase the LOD range per refinement.

Naive asynchronous streaming can cause popping artifacts when any ascendant is unloaded
before all required descendants are loaded, or vice versa. To avoid popping, the unloading
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of any node is for this reason delayed until its replacements are fully streamed in. This
can still cause popping artifacts due to large geometric or texture changes between two
LOD levels, or Z-fighting while elements of two LOD levels are loaded simultaneously.
Giegl and Wimmer [GW07] proposed a combination of opaque drawing and blending
between two discrete LODs to achieve a smooth transition. Scherzer and Wimmer [SW08]
proposed the interpolation of sequential frames as solution for discrete level-of-detail
rendering. Schütz et al. [SKW19] presented a method for real-time continuous level of
detail for rendering point clouds.

The shown algorithm does not take any measures to guarantee smooth LOD transi-
tions. When arbitrarily large changes in geometry and texture are allowed, blending
or interpolation are not sufficent anymore and the additional rendering cost is thus not
justified.

3.5.2 Cracks

Different tesselation levels between LODs can cause holes, called cracks. Cracks are
caused by the resulting t-vertices at the border of different LODs. In LOD-based terrain
rendering, they occur between two neighbouring tiles of different LOD. Figure 3.9 shows
how the different LOD levels can cause cracks.

(a) A t-vertex (red) occurs at the border of
two different tesselation levels caused by naively
doubling the tesselation level.

(b) The t-vertex (red circle) causes a crack (red
triangle) in the terrain.

Figure 3.9: Example of a crack (red triangle) cause by different tesselation level at a
t-vertex (red). (a) shows the the different tesselation levels of neighbouring nodes, but
the crack is not visible. (b) shows the crack as red triangle.

One solution for this problem is to limit the tesselation level between two neighbouring
tiles along the border to the lower tesselation level. This has the drawback of reducing
the fidelity of the model along the border. Xingquan et al.[CLS08] solved the problem by
filling the crack with additional triangles. Husain et al. [Hus+] avoid cracks during the
subdivison of their tesselation algorithm. Lee and Shin [LS19] presented a GPU-based
algorithm for real-time landscape visualization that avoids cracks by splitting the edge of
the coarser level recursively.
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Tesselation and cracks are not handled by Visionary, as the geometry is rendered as
provided by the source files.

3.5.3 Engine-Specific Optimizations

To achieve real-time streaming of large-scale terrains with the presented streaming
algorithm, several optimizations were required to bypass restrictions imposed by the
engine. The input scenes were preprocessed offline into CPU- and GPU-optimized memory
layouts. Software caching was used to reduce stalls during garbage collection and to
reduce the number of slow creational operations in the engine. File streams were kept
open and cached to avoid slowdowns due to slow file system access. Custom serializers
were implemented to extend the serialization functionality where the API provided by the
engine was insufficent. Thread context management was used to achieve multi-threading
in a main-thread model.

In Section 6.2, the engine specific restrictions are discussed, and the implementations
used to bypass them are presented.
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CHAPTER 4
Measurements

In this chapter, a two-phase out-of-core measurement algorithm for digital surveying
of streamed large-scale terrain is presented. It is explained how Shared Edge Detection
(SED) is used to terminate subsampling earlier by analytically finding exact midpoints
between neighbouring primtives and how the On-Data Ratio (ODR) is used to quantifiy
uncertainty of a measurement, and raise awareness about this uncertainty.

4.1 Overview
Digital terrain surveying allows to measure the geomorphometric quantities of terrain
surfaces. One application is the interpretation of digital outcrops for terrestral and
planetary geology. User-drawn polylines are used as intuitive digital measuring tape to
understand the extents and orientation of surface features. Such polyline-based DOM
interpretation tools are implemented, e.g., in VRGS 3.0 [Vrg] and PRo3D [Prob]. The
polylines are projected onto the terrain surface to evaluated feature points. An example
for an elementary measurement using this method is measuring the extents of a crater
or an outcrop. Different projection directions and subsampling strategies are used to
analyze finer surface details, e.g., walking distances or length of surface lines.

The presented measurement algorithm uses ray casting against mesh-based terrain for the
projection. Ray casting against mesh-based geometry is a well researched and understood
method with highly optimized algorithms available. Changing projection directions is
done by changing the direction of cast rays and adding more subsamples is achieved
by adding additional rays. Further subsamples increase the accuracy of the surface
reconstruction of the sample terrain profile as shown in Figure 4.1.
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(a) 2 feature points. (b) 1 subsample. (c) 3 subsamples. (d) 4 subsamples.

Figure 4.1: Subsampling for terrain profile reconstruction. (a) shows the user-selected
feature points. The orange dashed reconstruction does not reflect the terrain surfaces, as
both mountains are missing entirely. (b) shows one added blue subsample in the middle
of the polyline segment. The reconstructed surface profile improves only insignificantly.
(c) shows two further added blue subsamples. The profile now properly models the two
mountains, but no segment is fully accurate yet. (d) shows how one additional added
blue subsample leads to an excact reconstruction of the green planar segment.

The difficulties for surveying streamed large-scale terrain are that not all geometry can
be kept in memory at the same time and that surveying requires interative exploration of
terrains. Performing a measurement on a simplified geometry does not allow for accurate
measurements, and for this reason LODs are not useful for the measurement. This means
that geometry of the highest-resolution nodes needs to be streamed in for a measurement,
even when a lower-resolution node is rendered. This increases the total memory required.
The presented algorithm selects potential ray cast hit candidates in the broad phase by
raycasting against their AABB. Only required geometry is then streamed in for exact
evaluation in the narrow phase.

The difficulty with subsampling is that while more subsamples are desired, in an out-of-
core algorithm they take significantly more time, as the geometry must be streamed in.
Evaluating a large-scale terrain precisely is consequently challenging, and more so, as
the duration required is unpredictible. If all subsamples hit the in-memory geometry,
it is significantly faster than if large amounts of geometry need to be streamed in first.
This means that only a certain number of rays can be cast per frame, and the choice of
subsampling is important for the quality and performance of the algorithm. PRo3D [Prob]
relies on fixed-rate subsampling, where a fixed number of equidistant subsamples are
evaluated per polyline segment. An improved variable-rate subsampling strategy is
presented that uses SED to terminate with exact results when neighbouring primitives
are hit. A simple uncertainty metric ODR is presented to quantifiy the quality of a
measurement.

4.2 Algorithm
The presented algorithm for ray-casting-based measurements differentiates between feature
points and subsamples. Feature points are the points determined by the user to select
a terrain feature of interest and are always projected in view direction. Subsamples
are generated algorithmically and are projected in the direction d⃗ of choice. Directions
of choice can be the view direction, to measure what is seen on the screen, or the
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down direction, to measure, e.g., the walking distance between two feature points. The
up-vector of a terrain is defined by its orientation and down thus means in opposite
direction.

The input for each measurement are the start point −→ps and the endpoint −→pe . All segments
of a polyline are resolved identically, and so the algorithm is presented for a single
segment. The broad phase is as simple as performing all raycasts against all AABBs to
identify the potential geometry g to be streamed in. This can be done in parallel. As
these raycasts are performed against bounding volumes, all hits, and not only the closest
one, must be collected. Algorithm 4.1 lists the pseudocode for the broad phase.

Algorithm 4.1: Pseudocode for the broad phase
input : List of points p[], direction d and all AABB[]

output : List of potential geometry G[]

1 G← []

2 foreach point p in p[] do
3 rp ←Ray(origin : p, direction : d)

4 g[]←Raycast(AABB[], rp)

5 G[]← G[] ∪ g[]

During the narrow phase, multiple things have to be considered. Geometry that is not
currently loaded must now be streamed in for the raycast. The priority layers described
in Chapter 3 must be considered, such that hits on higher layers are prioritized as well.
Finally, the geometry is usually stored in local space, and transforming all vertices for
ray-primitive intersection tests is undesirable performance wise. Instead of transforming
all vertices of the geometry by applying the affine local-to-world transformation matrix
M, the inverse transformation matrix M−1 is used to transform the ray from world to
local space. Ray casting is then performed in local space. The subindex w is used to
indicate a coordinate in world space, and the subindex l indicates a coordinate in local
space. The origin of the ray −→row is transformed as follows:

−→rol = M−1 ∗ −→row (4.1)

The rotation component of M−1 is extracted as quarternion qM−1 . This allows to
transform the direction of the ray rdw as follows:

−→rdl = qM−1 ∗ −→rdw (4.2)

The result for all ray cast hits are the closest hit point −→hl , the identifier of the hit geometry,
and the vertices forming the hit primitive −→Vl . The positions are then transformed from
local space back to world space using the transformation matrix M. This is much more
efficient, as the number of hit primitives is many orders of magnitude smaller than the
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number of vertices of the whole terrain. As this is a simple affine transformation, only
the transformation for the hit point −→hl is shown. All other positions are transformed to
world space identically:

−→
hw = M ∗

−→
hl (4.3)

The resulting hit points hw ∈ H across all geometry are unordered, but only the closest
to the ray origin −→row is of interest. A linear search for the closest result in world space
is performed. During this step, the priority layers described in Chapter 3 must be
considered. As all data on higher-priority layers is considered of better quality, so are
hit points against higher-priority layers. A hit point is for this reason considered closer,
regardless of the Euclidean distance, if it originates from a higher-priority layer. As
the ray cast is performed in the local space of each potential hit target, the distance
in world space between the hit H[i]w and the ray origin row must be recalculated. The
resulting fraction of the ray cast, which defines the distance along the ray’s half line,
from ray origin to hit point in local space, does not guarantee proper ordering after
local-to-world transformation of the hit point. Algorithm 4.2 lists the pseudocode for the
priority-layer-aware search of the closest hit point.

Algorithm 4.2: Pseudocode for finding the closest and highest priority hit
input : Ray origin row, list of hit points Hw[] and priorities p[]

output : The closest hit point of the highest priority layer hcw

1 hcw ← Hw[0], pc ← p[0], dc ←Distance(Hw[0], row)

2 for i← 1 to Length(H) - 1 do
3 hw ← Hw[i], p← p[i], d←Distance(hw, row)

4 if p > pc or d < dc then
5 pc = p,hcw = h,dc = d

During the narrow phase, the geometry of the finest LOD is streamed in. Then the
raycast is performed in local space. The results are transformed back to world space. Out
of all hits, the closest of the highest priority is selected. As rays with similar origin and
direction are likely to hit the same geometry, the geometry is not released immediatly.
Instead, the geometry is released through a software cache, to keep recently used geometry
in-memory. This reduces how often the same geometry is streamed in per measurement.
Although the size of the geometry is of the finest detail, it is smaller than the rendered
mesh, as no textures are loaded. However, in large-terrain scenarios not all geometry can
be kept in-memory at once, consequently it must be processed out-of-core. Algorithm 4.3
lists the per ray pseudocode for the narrow phase.
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Algorithm 4.3: Pseudocode per ray for the narrow phase
input : List of potential geometry G[], Ray rw.

output : The closest hit point of the highest priority layer hc

1 H ← []

2 for i← 0 to Length(G) do
3 g ← G[i], M← G[i].localToWorld

4 if not IsStreamed(g) then
5 StreamIn(g)

6 rl ←WorldToLocal(M−1, rw)

7 hl ←Raycast(g,rl)

8 hw ←LocalToWord(M, hl)

9 H ← H ∪ hw

10 Cache.Release(g)

11 hc ← ClosestOfHighestPriority(H)

Depending on the selected subsampling strategy, all resulting projected polylines are then
refined. During subsampling, the Shared Edge Detection (SED) algorithm, presented in
this thesis, is used to find exact subsamples and terminate subsampling. The variable-rate
subsampling algorithm is described in Section 4.3. Once all subsamples are calculated,
they are classified as certain or uncertain and the uncertainty of the measurement is
calculated as the On-Data Ratio (ODR) presented in this thesis. The ODR is explained
in Section 4.5.

4.3 Subsampling
Subsampling is used to evaluate the terrain surface profile per projected polyline segment
as described in Section 4.1. However, even with subsampling, many subsamples can be
required to accurately reconstruct the terrain surface profile. A subsampling strategy
that minimizes the amount of subsamples taken, while leading to accurate results, is
consequently required. One strategy is fixed-rate subsampling, where a fixed number
of subsamples per polyline segment are taken at equidistant positions. This is the
subsampling strategy implemented in PRo3D [Prob]. In variable-rate subsampling
additional rays are cast until any of the termination criteria is met. The proposed
algorithm uses variable-rate subsampling to make the best use of the same number of rays.
When neighbouring primitives are hit, SED will find exact subsamples and terminate
earlier. Figure 4.2 visualizes how additional subsamples improve the reconstruction of
the terrain surface.
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(a) 2 feature points. (b) 1 subsample. (c) 3 subsamples. (d) 5 subsamples.

Figure 4.2: Example of how additional subsamples increase the accuracy of the resulting
terrain surface profile. The resulting surface profile is shown as dashed orange polyline.

Not only the number of subsamples matters, but also how they are chosen. Figure 4.3
shows how even if the number of subsamples is always the same, the terrain reconstruction
can vary significantly.

(a) 0 subsamples. (b) Subsampling right. (c) Subsampling left. (d) Exact result (SED).

Figure 4.3: Example of how different choices for subsamples result in different terrain
reconstructions. The proposed SED algorithm results in exact midpoints (blue circles)
whenever neighbouring primitives are hit. No matter where on the blue surface the
subsample is evaluated, SED will lead to an exact reconstruction.

The proposed subsampling strategy uses the rays −→ri and −−→ri+2 to recursively calculate
the subsampling ray −−→ri+1. For each two rays, one additional ray is cast in-between. The
average is sufficient, as all rays lie on the same ray casting plane. When subsamples are
cast in down direction, all rays share the same direction and calculating the direction
can be skipped. −→ro denotes the origin and −→rd the direction. The ray −−→ri+1 is calculated as
follows:

−−→roi+1 =
−→roi +−−→roi+2

2 (4.4)

−−→rdi+1 =
−→rdi

+−−→rdi+2

2 (4.5)

A subsampling ray is cast between each two rays until one of the following termination
criteria is met. To calculate the ODR, the resulting segment also is classified as certain
or uncertain based on the termination criteria:

• Two primitives connected by a shared edge are hit (certain, SED).

• The maximum recursion depth is reached (uncertain).
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• The origins or results are closer than ϵ (uncertain).

A distance limit of ϵ is used as termination criterion as there is no point to subsample
below the precision limit. A maximum recursion depth is enforced as it is not guaranteed
that any terrain could be hit. Errors during terrain reconstruction can cause holes within
the terrain, and measurements beyond the extents of the terrain have no chance of success.
Measuring outside the terrain might be considered an obvious error, but tiny holes in
the terrain are not. Tiny holes at subpixel size might not even be visible. Figure 4.4
visualizes the different termination criteria.

(a) (b) (c) (d)

Figure 4.4: Different termination criteria. (a) Maximum recursion depth is reached.
(b) ϵ threshold reached, the thin red structure was missed. (c) same primitive hit. (d)
neighboring primitives hit (SED).

Algorithm 4.4 lists the pseudocode for the outer loop of the subsampling algorithm.

Algorithm 4.4: Pseudocode for outer loop of the subsampling algorithm using
SED.

input : Ordered list of results Rin[] and their rays Rin[i].Ray

output : Refined ordered list of total results R[].

1 R← []

2 R.Add(Rin[0])

3 for i← 0 to Length(Rin)-1 do
4 left ← Rin[i]

5 right ← Rin[i + 1]

6 R.Add(Subsample(left, right, 0))

Algorithm 4.5 shows the recursive subfunction.
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Algorithm 4.5: Pseudocode for the recursive subsampling subfunction.
1 Function Subsample(left: Result, right: Result, depth: int)
2 if left.IsCertain or depth > max or Distance (left, right) < ϵ then
3 return

4 SED ← SED(left, right)

5 if SED.HasSharedEdge then
6 left.IsCertain ← true

7 return SED.Result

8 ray ← left.Ray+right.Ray
2

9 subsample ← Raycast(ray)

10 results ← Subsample (left, subsample, depth + 1)

11 results.Add(subsample)

12 results.Add(Subsample (subsample, right, depth + 1))

13 return results

4.4 Shared Edge Detection
Shared Edge Detection (SED) is a way to improve ray-casting-based measurements of
mesh-based terrain. It relies on the vertex positions of hit primitives, but does not require
any neighbourhood information. For any two consecutive raycast hits Hi and Hi+1, the
edges of the hit planar primitives are checked for equality. Edges are considered equal
when the positions of the vertices are equal.

When a shared edge is detected, both planar mesh primitives are tested for coplanarity.
If both are coplanar, no further subsampling is required, as the direct line −−−−−→HiHi+1 is an
exact surface reconstruction for the subsegment. As any primitive is coplanar with itself,
no further subsamples are required either. This holds true as long as only convex planar
primitives are used. The two most common mesh primitives are triangles and quads, and
they also were used for this work. Both primitive types, triangles and quads, are convex.

When the primitives are not planar, then the exact result can be found analytically by
calculating the midpoint −→M on the shared edge. In this case, the exact subsegments are
formed by −−−→HiM and −−−−→MHi+1. Figure 4.5 shows all SED cases.
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(a) (b) (c) (d)

Figure 4.5: Comparison of SED cases. (a) shows two hits within the same triangle. (b)
shows two hits within the same quad. (c) shows two hits on neighbouring, non-coplanar
primitives. In this side view, the primitive types are not visible, but it is visible how SED
improves the direct line result (dashed red line) by finding an exact midpoint (yellow).
(d) Case (c) shown from top. SED does not require neighbours to be of the same type.

The shared edge is found by comparing the vertices of both primitives. The first found
match is used as shared edge. When the primitives are formed by the same vertices,
they are planar. They also are planar, when one primitive is a quad, and the other is a
triangle formed by vertices that are a subset of the vertices forming the quad. This edge
case can occure during measuring across the borders of multi-layered data. Figure 4.6
visualizes the edge case of a triangle hit of a higher-priority layer that is embedded in
the quad of a lower-priority layer.

Figure 4.6: Embedded triangle edge case. The orange hit point belongs to the orange
triangle on the higher-priority layer. The black hit point belongs to the black quad on
the lower-priority layer. As the vertices of the triangle are a strict subset of the vertices
of the quad, the triangle must be embededed in the quad and both primitives must be
planar.

Algorithm 4.6 lists the pseudocode for finding the vertices of a shared edge.
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Algorithm 4.6: Pseudocode to find a shared edge if any exists
input : Set of vertices V0 of the first primitive and V1 of the second primitive.

output : Shared edge e0, e1 if any exists

1 hasSharedEdge ← false, isPlanar ← false

2 intersection ← V0 ∩ V1, count ← Count(intersection)

3 if count ≥ 2 then
4 e0 ← intersection[0],e1 ← intersection[1], hasSharedEdge ← true

5 if count = 4 or count = 3 and (Count(V0) = Count(V1) or IsQuad(V0) or
IsQuad(V1)) then

6 isPlanar ← true

To find the midpoint M when a shared edge was found, the ray casting plane is intersected
with the shared edge. The ray casting plane is the plane all rays lie within. All rays from
the same polyline lie within the same plane. The ray casting plane can for this reason be
constructed from any ray origin −→ro and the two hit points −→Hi and −−−→Hi+1. The point of
intersection of the shared edge and the raycasting plane is the midpoint −→M . Figure 4.7
visualizes this.

(a) (b) (c)

Figure 4.7: Step-by-step visualization of SED. (a) Two orange hit points Hi and Hi+1 lie
on primitives with a shared blue edge. The shared edge is formed by the blue vertices e0
and e1. (b) The ray casting plane is constructed from the purple ray origin and Hi and
Hi+1. (c) The green midpoint M is found by intersecting the ray casting plane with the
shared edge.

The ray casting plane is constructed by selecting any of the points −→ro , −→Hi or −−−→Hi+1 as the
plane origin −→po . The plane normal −→pn is constructed by the cross product of the two sides
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of the triangle formed by −→ro , −→Hi and −−−→Hi+1:

−→po = −→ro (4.6)
−→pn = −−→roHi ×

−−−−→
roHi+1 (4.7)

The midpoint −→M can then be calculated by solving the line-plane intersection for fraction
f . −→l is the distance from the point of the line, in direction of the line l, to the point of
intersection. pl is the vector from a point on the line to the plane:

−→
l ← −→e1 −−→e0 (4.8)
−→pl ←

−→
Hi −−→e0 (4.9)

a← −→pl · −→pn (4.10)

b←
−→
l · −→pn (4.11)

f = a

b
(4.12)

If b ̸= 0, there is a single intersecton −→M = −→e0 +−→l ∗ f . However, when b = 0, the line and
the plane are parallel. If also a = 0, the line is exactly on the plane and any point on the
line can be chosen, e.g., −→M = e0. Otherwise, they are parallel and have no intersection.

4.4.1 Mending vertices

Because of floating-point precision, it is possible that two values that should be equal
are not exactly equal. When searching for equal vertices, this becomes a problem. A
small distance ϵ can be allowed to meld vertices that drifted apart back together. In this
thesis, ϵ = 0 was chosen, as no floating-point math is performed on the vertex positions
of the geometry used for measurements. This allows to perform faster equality checks,
by testing for bitwise equality. The presented algorithm works equally for ϵ > 0, but
the midpoint −→M then also is within ϵ distance between the two edges. As vertices are
unordered, the midpoint will shift slightly based on which vertices are selected for the
shared edge. Figure 4.8 visualizes how using ϵ > 0 leads to mutiple possible midpoints−→
M .
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Figure 4.8: When vertices of tiles that drifted apart are melded by accepting a distance
ϵ > 0, the resulting midpoint can slightly shift depending on the selected vertices.
Additional to a midpoint on any of the two edges of a triangle or quad, a virtual midpoint
in-between can be the result. The virtual edges created by allowing ϵ > 0 are shown
dashed. Potential virtual midpoints formed by them are shown in orange.

4.5 On-Data Ratio

4.5.1 Assessing Uncertainty

Uncertainty is a key element of intuitive judgments. The trust in a measurement is
often based on the trust in the tool used, without necessarily the basis to be as certain
about a result as one should be. Amos Tversky formulated it wonderfully in Assessing
Uncertainty in 1974 [Tve74]:

UNCERTAINTY is an essential element of the human condition. The decisions
we make, the conclusions we reach and the explanations we offer are usually
based on beliefs concerning the probability of uncertain events such as the
result of an experiment, the outcome of a surgical operation or the future value
of an investment. In general, we do not have appropriate models according
to which the probability of such events could be computed.

It is important to raise awareness about the existance of uncertainty. Measuring and
visualizing it could help to prevent the false trust given in a measurement based on
availability of data alone. In recent years, the research of uncertainty gained more
relevance in fields other than statistics and cognitive sciences. Rhodes et al. [Rho+03]
presented methods to visualize uncertainty in isosurface rendering. Waser et al. [Was+12]
used ranged user controls to give users control about the amount of uncertainty in their
simulations. Bayburt et al. [Bay+17] analyzed the geometric accuracy of the commercially
available "WorldDEM core" height model. They concluded that while it is more accurate
than other models they compared, it is significantly influenced by terrain inclination.
Klug et al. [Klu+18] analyzed the uncertainty of their measurements for robotic total
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simulation and verified it analytically, and via Monte Carlo experiments. Gillman et
al. [Gil+21a] list uncertainty visualization as one of ten selected open challenges in
medical visualization. Gillman et al. [Gil+21b] provided a state-of-the-art analysis of
uncertainty-aware medical imaging in 2021 [Gil+21b].

4.5.2 ODR

The On-Data Ratio (ODR) is proposed as a simple uncertainty metric to quantify the
uncertainty of the measurements presented in this chapter. It is defined as the ratio of
the length of polyline segments that are certain over the total length of the polyline. If a
segment is marked certain, the start of the segment is classified as certain. For N points
−→pi forming a polyine, it is calculated as follows:

d(a, b) =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2 (4.13)

dc(a, b) =
{

d(a, b) if certain(a, b)
0 else

(4.14)

odr =
∑N−1

i=1 dc(pi, pi+1)∑N−1
i=1 d(pi, pi+1)

(4.15)

Segments are considered on-data, and accordingly certain, when the direct line is a perfect
terrain surface reconstruction according to the available data. During subsampling, the
subsample is classified as certain or uncertain based on the termination criterion that is
met. When subsampling terminates with an exact result through SED, the subsample
is classified as certain. In all other cases, the subsamples are classified as uncertain, as
it is not known how exact the surface reconstruction is. The direct line between two
subsamples on a plane is an exact reconstruction, but this is uncertain if the plane is
unknown. Figure 4.9 visualizes how the different termination criteria lead to uncertainty.

(a) (b) (c) (d)

Figure 4.9: Comparison of causes for uncertainty. (a) Occluded areas cannot be hit in the
direction of the raycast. (b) Missing data and holes cause uncertainty. (c) Termination
due to a maximum number of subsamples. (d) Measuring across multi-layered data is a
source of uncertainty. The change from the black low-resolution and low-priority terrain
to the purple high-resolution and high-priority terrain is classified as uncertain.
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For the user, the ODR value is shown as percentage and by coloring each polyline segment
as certain or uncertain. The most relevant difference is between measurements with
odr = 1, which are completly certain, and those with odr < 1, which contain any source
of uncertainty. A small uncertain segment across a tiny terrain hole might not be visible
to the user, as the render segment might be smaller than a pixel. However, by listing
uncertain segments and allowing the user to jump to them, they are made aware of their
existance and can investigate why a measurement is uncertain.

Screenhots from Visionary utilizing ODR to classify measurements are shown in Chapter 6.
Ideas for future work to account for other sources of uncertainty are shown in Chapter 7.
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CHAPTER 5
Implementation

In this chapter, the implementation of Visionary is presented. The program architecture,
used frameworks and libraries, and implemented tools are presented. The OPC format
and the Renderable Blob format are explained, as well as all preprocessing that is used
to convert from OPC to renderable blobs. Optimizations used to achieve real-time
streaming performance are explained and code as well as pseudocode for them is shown.
The restrictions and limitations of Unity are discussed and solutions used to bypass them
are presented.

5.1 Overview
Visionary is a prototype of a multithreaded out-of-core streaming solution with polyline-
based surveying tools for geomorphometric analysis of large-scale terrains. It supports
scenes in OPC file format and preprocesses them into its custom Renderable Blob file
format. Renderable blobs contain textured triangle mesh data. As the input textures
contain the lighting information, no further lighting is applied. Textures can be in RGB24
or R8/A8 format. RGB24 textures contain the red, green and blue channel in 8 bit
precision each. As the used textures contain lighting information as well, the R8 or A8
textures contain only 8 bit illumination information, but no color information, in either
the red or the alpha channel. Other material models could easily be extended, but these
covered the types of the used scenes.

Visionary is implemented using the Unity gmae engine and its Data-Oriented Techstack
(DOTS).

5.1.1 Frameworks and Languages

Visionary was developed in Unity, a higher-level engine, developed by Unity Technologies.
Unity’s success as engine for mobile game development, with a reported 71% of top
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1,000 mobile games in 2020 [Unip], shows a clear strength as engine for mobile game
development. In recent years it also has been used to build tools in a wide range of
other fields, such as movie production [Bri19], artificial intelligence [Jul+18], autonomous
driving [Ron+20], CAD-based industries [Teca] and others, e.g., VR therapy [Riz+15].

Multiple versions of the Long Term Support (LTS) stream 2020.3 [Tecm] were used to
develop Visionary. Unity 2020.3 was the at the time of development the highest version
with DOTS support. DOTS is a set of libraries to support high-performance real-time
applications. The core of DOTS consists of:

• an Entity-Component-System (ECS) [Tec20] to support the design of data-driven
efficient algorithms,

• the highly optimized Burst Compiler [Unic],

• the Burst Compiler compatible math library [Unit],

• the job system, which allows writing efficient parallel algorithms over ECS data [Unir],
and

• the new physics system [Unib], with pluggable physics middleware, giving access
to, e.g., Havoks Physics for Unity [Unia] and being compatible with ECS data.

Unity supports both a Mono- and a C++-based scripting backend. In both backends,
the scripting language is C#. The C++ backend uses Intermediate Language To
C++ (IL2CPP) to convert user-written C# code to C++. The IL2CPP transpiler
converts Microsoft Intermediate Language (MSIL) code into C++ code. This gives
access to performant native binaries for the targeted platform. IL2CPP uses ahead-
of-time (AOT) compilation. While IL2CPP does not guarantee code to be faster in
every case, many algorithms proved to be faster with IL2CPP than with the Mono
runtime. The highest supported language version was C# 8 with .NET STANDARD
2.0 as API compatibility level. Roslyn [Mic] is the compiler used by Unity to create
managed assemblies (.NET DLLs). The Unity Burst [Unic] compiler was used to optimize
burst compatible jobs. Burst translates IL/.NET bytecode to highly optimized code
using LLVM. All performance-critical assemblies were compiled as unsafe [dbo] to allow
unchecked access of unmanaged memory.

The DOTS libraries were required to realize this project in Unity. DOTS provides func-
tionality which was not available in Unity before, e.g., collider serialization. Furthermore,
it supports writing highly efficient and parallel code for data-oriented algorithms with its
powerful job system and burst-compiled job code. The Unity Entities [Tec20] package
is the core package for DOTS-based code and contains the framework for the Entity
Component System (ECS) architecture. For this thesis, version 0.51 of the Unity Entities
package was used. The version of the Entities package is used to identify compatible
DOTS libraries. The Unity Job System [Tecd] was used to schedule and parallelize burst-
optimized tasks. The Unity Mathematics [Unit] package was used to utilize the general
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and SIMD optimization support through the Burst compiler. The Unity Physics [Unib]
libraries were used to implement the high-performance ray casting used for the measure-
ments. The Havok Physics for Unity [Unia] package was used as the physics backend.
The Unity Collections [Uniq] libraries were used to achieve high-performance allocations
of unmanaged memory. Unity’s Universal Render Pipeline [Uniu] (URP) was used to
access its hybrid renderer (version 2), which is required to render ECS-based objects
with Entities version 0.51. The Unity Shadergraph [Tecp] was used to generate URP
compatible shader code.

The UnityEngine and UnityEditor packages contain the core functionality of Unity.
The core of the Unity framework before DOTS were the types GameObject (GO) and
MonoBehaviour (MB). GameObjects allow creating objects, whose lifecycle is managed
by Unity. MonoBehaviours are the extension point for custom code, integrated into the
Unity game loop via overriding predefined callbacks. DOTS is not meant to replace the
GameObject- and MonoBehaviour-based workflow, but is designed to synergize with it.
Both frameworks are thus used side-by-side. The Unity User Interface (UGUI) [Unis]
package was used to create the UI. The Unity TextMeshPro [Tecl] library was used for
text rendering of signed-distance-field-based fonts (SDF).

MessagePack-CSharp [Mes] was used to read and write MessagePack files. Custom
resolvers and serializers were implemented to support custom types and types from
DOTS not yet supported.

UniRx [Unim] was used for reactive programming, which was used to decouple archi-
tectural layers. UniTask [Unin] was used for allocation free async/await support. All
scheduling between thread pool and main thread was realized via the UniTask scheduler.

Zenject [Zen] was used as dependency injection framework, as Unity does not provide
one.

Magick.NET [Lema] was used for general image conversion operations. The MonoGame
DDSLoader [Monb] was ported to implemented runtime support for Direct Draw Sur-
face [lora] texture image files.

Microsofts Task Parallel Library [IEv] was used to parallize code via thread pooling.
Types and algorithms for managing unmanaged memory from the .NET libraries Sys-
tem.Buffers, System.Memory, System.Net, System.RuntimeCompilerServices.Unsafe,
System.Threading.Tasks.Extensions and System.Windows.Forms were used by directly
referencing their assemblies. Access to these libraries is in Unity restricted because it
uses an older version of .NET.

5.1.2 Main loop

Unity enforces a strict main loop model. A single dedicated main thread is working
through this loop. Custom code is executed via predefined methods called at specific
points in this main loop. There are over 35 supported callbacks [Teci] with the two
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most important ones being Update, early at a frame, and LateUpdate, late in a frame.
Figure 5.1 shows a schematic representaiton of the execution order.

Figure 5.1: A schematic representaiton of the Unity application flow. The main loop
highlighted in purple. Only the most important callbacks and none of the internal steps
are shown.

Both asynchronous and multithreading tasks are scheduled from and completed in the
main thread. If the target platform does not support multiple threads, the tasks are
completed in the main thread. Multiple different ways to achieve asynchronous code
execution are available, such as coroutines, threads, tasks and jobs. They differ in kind
of management, async-await support, overhead, and multithreading support. Coroutines
are a low-overhead solution to achieve asynchronous, but not multithreaded, execution.
Visionary does not make direct use of coroutines, but indirectly uses them via libraries,
e.g., UI libraries that schedule graphical updates by using coroutines. Threads give direct
access to common language runtime threads, but also are only used indirectly. Visionary
uses tasks, which are executed on one of the threads of C#s ThreadPool, to perform
long-running operations. As tasks are a way to perform true multithreaded code, they are
decoupled from the main loop and are allowed to run for as long as required. However,
many operations in Unity are restricted to be performed on the main thread, which
requires performing a context switch back to the main thread to make use of a task’s
results. The Unity Job system is the most recent addition to write multithreaded code
in Unity. It not only distributes work, but also schedules job dependencies. It provides
many multi-threading safety guards. Job code written within the strict limitations of
the Burst compiler, such as restrictions to blittable types, can be highly optimized by
it. The Unity Collections [Uniq] library provides Burst compatible collection types to
store data efficiently and pass it between jobs and other code. The access to custom
allocators gives access to fast allocations of unmanaged memory for short-lived data.
However, jobs are restricted to complete within four frames, which does not make them
suitable for long-running operations. These restrictions also affect the file system access.
Burst-compiled jobs only provide restricted file system access via the burst compatible
AsyncReadManager. Jobs can be scheduled to be run in the main thread if needed, which
leads to the loss of most benefits other than scheduling, but it makes debugging easier.
They are executed on a fixed set of worker threads similar to the C# ThreadPool.

5.1.3 Program Architecture

Visionary is structured into the following main components:
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• preprocessing (converts OPC scenes into Renderable-Blob-based scenes),

• streaming (performs streaming decisions, streams in and out),

• rendering (converts textured mesh data into renderable objects and performs LOD
selection).

• measurement (performs ray casting, subsampling and uncertainty calculations),

• line rendering (renders polylines for measurements),

• and GUI (Graphic User Interface to select scenes to load, configure settings and
initiate measurements).

These components will be described in the following sections.

Preprocessing

The prepropcessing component is responsible for loading, cleaning, and converting OPC
files to Renderable Blob files. Its GUI allows to select the source and target directories,
as well as which of the OPC hierarchies, found during a directory scan, should be loaded
and converted. To avoid scanning directory trees with several hundred thousand files,
which can take several seconds even on a fast SSD, a once scanned tree is cached and
stored as MessagePack file. Large-scale scenes and their directories are rather static and
rarely change, and thus the user experience is improved with near-instant access to the
available scenes in subsequent executions.

All custom serialization components for DOTS, MessagePack and OPC files are part of
the preprocssing component.

Streaming

The streaming component is responsible for managing currently loaded HLODs. It
contains the implementation for the M-HLOD streaming algorithm and the LOD selection
presented in Chapter 3. The result of each update of the streaming component is a new
set of Entities to be rendered based on the currently streamed-in LOD nodes.

Measurement

The measurement component provides the functionality for the two-phase measurement
algorithm using SED and ODR presented in Chapter 4. It streams geometry independently
of the streaming and LOD decisions for rendering. Measurements are user-initiated tasks,
and the measurement component for thsi reason does nothing between two measurements.
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Line Rendering

The polylines used for the measurement are rendered by using Unity’s LineRenderer
component. One LineRenderer per currently shown Measurement is spawned. Line points
are positioned in world space and the width of the lines is scaled according to the closest
point to the camera, to ensure a close to constant screen width.

5.1.4 GUI

The GUI is implemented using Unity’s User Interface (UGUI) [Unis]. UGUI provides
different rendering modes, with Screen Space - Overlay being used in Visionary. This
renders the UI on top of the rendered scene.

A perspective camera is used for the viewer, and camera stacking is utilized to achieve
priority rendering as described in Chapter 3.

The user-drawn polylines are implemented by reacting to clicks and converting the pixel
positions to world space coordinates. The polylines are then drawn in world space using
the Linder Renderering system, with lines on the screen being drawn close to the near
plane.

The presentation layer is decoupled from the application layer by using UniRx [Unim] as
library for reactive programming. This allows to bind data to UI components similar to
DataBinding in the C# Model-View-ViewModel pattern [dav].

Tools
The functionality implemented in Visionary is explained in the following sections.

5.1.5 Navigation

Navigating large-scale terrains requires both fast camera movements across the surface
and fine controls close to the surface. A free-fly camera was implemented as Unity does
not provide such a camera model. The keys W , A , S , D are used for forward, backward,
left and right navigation. Yaw and pitch rotations are enabled while holding MouseRight
and react to mouse movement. The keys Q and E allow roll rotations. To achieve
quick and precise navigation, the speed accelerates when the users hold LeftShift , and
deaccelerates otherwise.

5.1.6 Polyline Drawing

The polylines for the measurement presented in Chapter 4 are user-drawn and then
projected based on the selected direction and subsampling strategy. Figure 5.2 shows an
example of a polyline before projection, after projection, and after camera movement.
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(a) (b) (c)

Figure 5.2: (a) The polyline drawn by the user, before the projection. (b) The polyline
after projection in view direction. (c) The polyline after camera movement to a different
perspective. The visible steps are due to the resolution of the terrain data and not
artifacts caused by the algorithm.

In this thesis, multiple settings for the polyline projection were implemented. Traxler et
al. [TO15] used the projection in direction of the view, and downward onto the terrain,
to measure different geomorphometric properties of Martian terrains. Both directions
were implemented as options in Visionary. Fixed-rate and variable-rate subsampling
are available as subsampling strategies. Subsampling can be deactivated altogether by
selecting fixed-rate subsampling with 0 subsamples. Polylines can be reprojected under
different settings. This method was used to create the data for the evaluations by creating
a measurement with one setting, and then reprojecting the exact same feature points with
a different setting. Figure 5.3 shows a comparison of the results with view projection,
down projection and no subsampling.
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(a)

(b) (c)

Figure 5.3: Different types of measurement. (a) shows a blue polyline projected in view
direction and a green polyline projected in down direction. Projecting downward is
used to measure walking distances and projecting in view direction to survey outcrop
features. (b) shows the same polylines after moving the camera. The difference between
the directions is emphasized. (c) shows a red direct line measurement without subsamples.
This is useful to measure the extents of terrain features.

5.1.7 Annotations

Measurements are used to create annotations. This name is used in PRo3D [Prob]
and also in Visionary. Annotations can be renamed and recolored to keep them apart.
The annotation list allows cycling through segments and analyzing uncertain segments.
Figure 5.4 shows three annotations at a hill wall, the interface to display the length,
number of segments, their ODR value, and the number of samples used.
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(a) (b) (c) (d)

Figure 5.4: (5.4a) shows the annotation details listing the length, the number of segments,
the ODR, and the number of samples. It also allows changing name and color of the
annotation. (5.4b) shows the annotation list entry, which allows selecting annotations
and cycling through their segments. (5.4c) shows three annotations from far away. The
uncertain segment is not visible at this distance. (5.4d) shows a zoomed in view on an
uncertain segment after cycling through segments. This allows to identify the uncertain
segments.

5.1.8 Selection of Up

To perform projection into the down direction, first the up-vector of a terrain needs to
be determined. Paar et al. [Paa] used the NASA SPICE kernels [NAS] to evaluate the
planetary coordinate system for their PRoViDE framework, and it is used in PRo3D,
which is part of the framework, by Ortner et al. [Prob]. For this work, the Martian epsilloid
was approximated as sphere, and a constant up-vector was assumed per measurement.
This simplification ignores the effect of the planetary curvatore over long measurements.
Figure 5.5 shows the coordinate system gizmo placed, with the green axis facing up.

Figure 5.5: The coordinate gizmo shows the point on the surface that is used to evaluate
the up-vector. The green axis of the coordinate gizmo visualizes the up-vector.

5.2 Ordered Point Cloud File Format
This section gives an overview of the Ordered Point Cloud (OPC) file format. OPCs store
arbitrary depth LODs of discrete textured meshes by using a folder hierarchy, with one
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folder per LOD node, and one XML-hierarchy file to store the relationship. Mesh data
in OPC is stored in binary format Aardvaark Array (extension: .aara) files. Large-scale
terrains are stored partitioned and tiled across multiple OPCs. All scenes used in this
thesis are in OPC file format. This is the file format used in PRo3D. This format was
chosen as input format to evaluate the presented algorithms against PRo3D, using the
exact same input data.

The OPC file format was first presented by Ortner et al. [Ort+10] to support visualization
of infinite surfaces with an arbitrary number of levels of detail. The datastructures for
LOD hierarchies in this thesis are based on the LOD hierarchies of the OPC file format.

Paar et al. [Paa+15a] have used the OPC file format to visualize Martian terrain recon-
structed from the ExoMars PanCam wide-angle multispectral cameras in PRo3D [Prob].
They converted the original point-cloud information from the Generic Point Cloud (GPC)
file format to OPC. To support the performance for streaming purposes, the OPC files are
further preprocessed into a binary large object file format (blob) in this thesis. Section 5.3
describes the resulting blob file format after preprocessing.

An extract of the OPC file format specifications relevant for this work can be found
in Appendix A 7.1. The full specification is available in the Ordered Point Cloud File
Format Documentation [TO].

5.2.1 Files and Folders

Scenes in OPC format are stored in a folder-based hierarchy. The patchhierarchy.xml file
of each hierarchy stores the tree relationship of the LODs. Each LOD node is referred
to as patch. The data of each patch is stored in its own folder, with the texture images
being stored in a shared image folder. The patch.xml file contains the relative file paths
to images for textures and binary .aara files, which contain vertex positions, normals,
texture coordinates, and texture weights.

The folder structure of an OPC hierarchy looks as follows:

guid-of-opc/
images

...
patches

patchhierarchy.xml
guid-of-patch-1/

patch.xml
Positions.aara
...

...

Figure 5.6: The OPC folder structure.

56



5.3. Renderable Blobs

5.2.2 Patch

The definition of each patch is stored in its patch.xml file. It contains the relative paths
to the Aardvark Array (extension: .aara) files including vertex positions, normals, and
texture coordinate data in binary format. The mesh positions are stored in local space
and an affine transformation matrix M called LocalToWorld is used for the coordinate
transfer.

5.3 Renderable Blobs
Visionary preprocesses all OPC files into its own streaming optimized binary format,
called the Renderable Blob file format. This optimization is required to efficiently stream
in nodes. Unity does not allow to create the large Mesh and MeshCollider objects required
for rendering and measuring fast enough for interactive streaming, and for this reason
preprocessing was required. The textured meshes are preprocessed into the GPU layout
used for rendering them. This allows to achieve interactive frame rates for large-scale
terrains with the streaming algorithm presented in Chapter 3. The bounding volume
hierarchy of the geometry used for ray casting is preprocessed, a MeshCollider in Unity
terms. This allows to stream in geometry sufficiently fast for interactive measurements
on large-scale terrains with the measurement algorithm presented in Chapter 4.

Renderable blobs, in contrast to OPC, are optimized to ensure that:

• All data is ready to use without further processing. No triangulation cleaning or
relayouting of memory is required.

• All mesh data is densely packed in the GPU memory layout. Invalid faces are
removed.

• Mipmaps are precalculated and texture data reformatted to the memory layout
used on the GPU.

• Data that is used together is read together. This increases efficiency of file system
accesses.

• Serialization formats used are optimized for deserialization. This is important, as
all data is serialized only once, but deserialized many times during streaming.

An extract of the file format specification of renderable blobs can be found in Appendix
B 7.1.

5.3.1 Files and Folders

The OPC folder structure is kept, but no image folder is used, as the texture data is
part of the renderable blob. Instead of storing images, textures are stored. All data
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required to store one OPC patch, which is one textured triangle mesh, is stored as one
renderable.blob file.

This reorganization of files reduces the number of files to about one third. This is
irrelevant in small scenes, but becomes relevant in large-scale terrains with several
hundred thousand files. Fewer files means fewer file paths and file handles to process
and this helps to keep streaming efficient. Figure 5.7 shows the OPC folder structure
compared to the Renderable Blob folder structure:

Patches/
patchhierarchy.xml
guid-of-patch-1/

Ortho.aara
Ortho_Coordinates.aara
Ortho_Weights.aara
Patch.xml
Positions.aara
Normals.aara

...
Images/

texture-of-patch-1.tif

Patches/
dotshierarchy.mpk
guid-of-patch-1/

renderable.blob
aabb.collider.blob
mesh.collider.blob

...

Figure 5.7: Comparison of the folder structure of OPC scenes and scenes in Visionary.

5.3.2 dotsHierarchy.mpk

The XML-hierarchy-based HLOD information from the OPC file patchhierarchy.xml is
converted to an index-based aligned array structure, and stored as MessagePack file
dotsHierarchy.mpk.

Aligned arrays of value typed data allow iterating linearly in a much more cache efficient
way than reference-based structures. During linear array iteration, the cache line is then
filled with multiple array elements at once, which cause high cache hits. In contrast,
reference-based structures require jumping to the memory section the reference is pointing
to, which is less likely to be cached.

In aligned arrays, one array per data type is used. The data of each node i is stored at
the index i in each array. When the types are value typed instead of reference typed,
linear iteration becomes highly cache efficient, as cache lines will be filled with the next
accessed array elements.

The LOD tree is stored by storing the indices of the parents and children. The index of
the parent of node i is stored in IndexToParentIndex[i]. The root has no further parent.
This is indicated by using −1 as parent index. The indices of all children of node i are
stored in IndexToChildIndices[i]. The leaves have no further children as indicated by
an empty array. Frequently accessed data, such as the indices per level, is cached in
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the hierarchy in the same way. The LocalToworld affine transformation matrix M is
elevated from being stored per patch in patch.xml to being stored in an aligned array
per hierarchy. This allows faster access to this important data. Figure 5.8 visualizes the
aligned array-based hierarchy,

(a) Data per node is stored in aligned arrays.
The data of node 1 (blue) is stored at index
1 of each aligned array.

(b) Frequently used lookups such as the in-
dices per LOD level are stored in the hierar-
chy.

Figure 5.8: The data per node is stored in a cache-friendly way in its hierarchy and
accessed by the nodes index. Data of the same type can be iterated over efficiently.

The MessagePack [Mes] format was chosen for the hierarchy file, as it is a general-purpose
binary serialization format, it is fast to deserialize, and easy to extend for all used custom
non-primitive types.

5.3.3 renderable.blob

The renderable.blob file contains the textured mesh information for rendering. The
mesh information, stored separately in multiple files in OPC, is merged into one array
of VertexData, which is equivalent to the GPU buffer format. Listing 5.1 shows the
definition of VertexData. float2 and float3 are 2- and 3-component single-precision float
vectors.

VertexData
{
float3 Position;
float3 Normal;
float2 UV;

}

Listing 5.1: The definition of VertexData

Figure 5.9 shows the memory layout before and after the merge of multiple OPC files to
one array of VertexData.
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(a) OPC scenes store positions, normals and texture coordinates in separate files.

(b) Position, normal and texture coordinate are combined per vertex and stored as an array
of VertexData. This memory layout is used during rendering and allows to copy the read data
directly into the target GPU buffer.

Figure 5.9: Comparison of memory layout in Aardvark Array files and Renderable Blobs.

All types used for renderable blobs are blittable [gewa]. This is essential to achieve
the serialization and deserialization performance for streaming. The deserialization of a
blittable type with known memory layout only consists of reading the data from storage
and reinterpreting the read bytes. Copying memory and reinterpretation is the fastest
way to deserialize data.

5.3.4 .collider.blob

The serialization of the geometry used for the measurement algorithm utilizes this. To
serialize the geometry, its blittable type is reinterpreted as bytes, and then the length
is written to the target file, followed by the bytes of the geometry. Deserialization
inversely only requires to read the length of the geometry data, copying the bytes and
reinterpreting it back to the original format. The geometry information is stored in the
mesh.collider.blob file.

The rendering and geometry information for measurements was split to avoid overreading
data during loading of rendered meshes or loading of geometry for measurements. Each
subsystem only loads the data required to render or measure.

The AABB is stored in the exact same layout as the geometry for measurement, but it is
separated, as it is only read once. The AABB is stored in the aabb.collider.blob file.

5.4 Preprocessing
This section gives an overview of all steps performed during the offline preprocssing stage.
During preprocessing, all OPC files are read, cleaned, triangulated and then written back
to the file system as Renderable Blob files. Figure 5.10 shows all preprocessing steps.
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Figure 5.10: The pre-processing stages in order. Pre-processing ends with writing the
serialized files back to the filesystem.

5.4.1 Loading OPC

All scenes used for this work are available in OPC format, which was described in
Section 5.2. They are preprocessed to be stored in the Renderable Blob format described
in Section 5.3.

Loading an OPC from a target directory requires scanning the directory tree for OPCs. Di-
rectories containing OPCs can be identified based on the existance of a patchhierarchy.xml
file.

5.4.2 Triangulation

OPC files allow storing meshes in multiple different representations. All scenes relevant
for this work were stored as a list of quads, with their data stored in linearized arrays in
row major order. A list of quads can be triangulated as regular grid. No face indices are
stored, and triangulation is based on the implicit grid relationship. Figure 5.11 shows a
possible triangulation for a RowMajor array of known width and height.

(a) 4x4 RowMajor grid. (b) Regular grid triangulation

Figure 5.11: RowMajor linearized arrays store the data row by row. Given the width
and height of the 2D grid, a regular grid triangulation is possible.

Altough all positions are stored in a linearized 2D array, this does not mean that all
stored meshes are rectangular. To indicate empty space, "Not A Number" (NaN ) is used.
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Vertices containing NaN values are discarded. Figure 5.12 shows an example of such a
non-rectangular mesh.

Figure 5.12: NaN values are used to mark the border of a non-rectangular patch.

5.4.3 Cleaning

Indication of empty space is not the only source of invalid values, such as NaN. Floating-
point errors and other reconstruction faults can lead to these values as well. When
any component value is invalid, the whole vertex has to be discarded. When a vertex
is discarded, the triangle referencing it becomes invalid and has to be discarded too.
Discarding a triangle causes a hole. During the cleaning stage, all invalid vertices and
triangles are removed. To keep holes small, affected quads are retriangulated where
possible. Figure 5.13 shows how a hole is detected and affected quads are retriangulated.

(a) NaN value detected. (b) NaN value removed (c) Re-Triangulation (d) Resulting hole.

Figure 5.13: Vertices containing invalid values, such as NaN, are removed alongside their
affected triagnles. This causes a hole. Retriangulation can help to reduce the size of the
created hole.

Discarding vertices causes data arrays to contain unused entries. To compact them
densely, all elements are shifted left, until no unused entries remain. This requires
updating all vertex data arrays. Shifting the data also requires to update the indices
accordingly. Figure 5.14 gives an example of such a shift.
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Figure 5.14: Discarding invalid NaN values leaves array indices [1] and [4] unused. By
shifting all data left, the arrays become compact again. No unused indices remain. All
aligned arrays have to be shifted accordingly.

5.4.4 Merge, Serialize and Write

Through conversion from OPC to , the memory layout is explicitly changed and files
are merged, as described in Section 5.3. The output types are all densely packed and
identical to the memory layout during runtime. The hierarchy object is serialized to
bytes using MessagePack [Kaw] and written to file with File.WriteAllBytes(path, bytes).
The renderable blob is serialized to bytes using Unity.Entities.BlobAssetReference and
written to disk with a custom version of Unity.Entities.Serialization.StreamBinaryWriter,
the DeprecatedStreamBinaryWriter. In Section 6.2 the limitations of the Unity engines
are discussed, and why a custom serializer was required. The Unity.Physics.Collider,
which contains the geometry for the measurement, is written to disk by writing its byte
size, followed by its bytes. The DeprecatedStreamBinaryWriter also was used for this
step.

The multithreaded job system from DOTS and its Burst compiler are used to efficiently
create MeshColliders. Listing 5.2 shows a code example for the burst-compiled creation
of MeshColliders using jobs.

// Allocate NativeArray memory
using NativeArray<float3> vertices =

v.ToNativeArray(Allocator.TempJob);
using NativeArray<int3> indices =

i.ToNativeArray(Allocator.TempJob);

// Create the job and pass in data
var job = new CreateMeshColliderJob {
Vertices = vertices,
Indices = indices,
Colliders = new NativeArray<BlobAssetReference<Collider>>(1,

Allocator.TempJob, NativeArrayOptions.UninitializedMemory)
};
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// Run the job and complete it
var handle = job.Schedule();
handle.Complete();

// Copy back the results
using NativeArray<BlobAssetReference<Collider>> colliders =

job.Colliders;
using BlobAssetReference<Collider> meshCollider = colliders[0];

// Serialize the meshCollider
// ...

[BurstCompile]
struct CreateMeshColliderJob : IJob {
[ReadOnly] public NativeArray<float3> Vertices;
[ReadOnly] public NativeArray<int3> Indices;
public NativeArray<BlobAssetReference<Collider>> Colliders;
public void Execute() => Colliders[0] =

MeshCollider.Create(Vertices, Indices);
}

Listing 5.2: Burst-compiled CreateMeshColliderJob

5.5 Optimizations

5.5.1 Memory Hierarchy

Modern CPU and GPU architectures are designed with complex cache hierarchies. Kumar
and Singh [KS16] gave an overview of the performance differences of varying cache types
measured in CPU cycles. According to them, the difference in latency is an order of
magnitude per layer. The access to the filesystem is multiple orders of magnitude slower
than access to the hardware caches available in CPUs. In a real-time out-of-core rendering
system, the data has to be copied through the whole memory hierarchy. The slowest layer
is the local or remote file system. The next faster layer is the working set memory. The
last layer rendering data needs to be copied to is the GPU memory. Efficient memory
layout is in consequence essential to achieve the required performance. Figure 5.15 shows
a simplication of the complete memory hierarchy, with emphasis put on the CPU cache
hierarchy, as the proposed algorithms are CPU-based.
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Figure 5.15: Modern CPUs and GPUs have sophisticated multi-layer cache architectures.
Both have dedicated caches for specific operations. The CPU cache architecture shown
is a schematic representation of the Zen 2 cache architecture and shows a per core L1
and L2 cache model with a shared L3 cache [Naf+21].

One of the simplest, and hence fastest, operations is sequentially copying data from one
layer of the memory hierarchy to the next. This is only possible without in-between
processing if the data is stored in the memory layout required by the target layer. In
this thesis, all data is for this reason stored in either CPU- or GPU-optimized layout,
depending on where it is finally processed during runtime. This is common practice when
the time for preprocessing is possible and the data is available offline.

Many optimizations in Visionary are designed to utilize this memory hierarchy as efficiently
as possible. The following methods were used to achieve a high streaming performance:

• The Renderable Blob format presented in Section 5.3 is designed to avoid processing
data between layers. This allows to directly copy the data required for rendering
the textured meshes directly into the target buffer.

• The aligned-array-based hierarchy presented in Section 5.3 stores data in iteration
order, and it stores it densely packed as continuous memory. This optimizes the
read performance of linear iteration during the LOD selection.

• Software caches were used to reduce acccess to the slower file system by keeping
the data in faster RAM and the CPU hardware cache.

5.5.2 Memory Management

Unity uses three memory management layers [Tecg]:

65



5. Implementation

• C# memory with a managed heap and garbage copllector. In the following section
the term managed memory is generally used for this memory.

• C# unmanaged memory. This memory is accessed by using the Unity.Collections
library. The term unmanaged memory is used in this thesis for this memory.

• Native memory. Native memory is C++ memory used by Unity to run the engine.
This memory is mostly inaccessible to users.

As Visionary runs in a common language runtime (CLR), it uses the CLR garbage
collector (GC) [gewb]. During garbage collection, all other threads have to be stopped,
to free unused memory. This can have significant impact on the performance. While
garbage collection is fast for short-lived objects and memory allocated on the stack, it can
stall the system noticeably for large objects and complex reference hierarchies. Avoiding
temporary large copies and complex reference hierarchies is therefore important. Thus,
the renderable blobs are stored in unmanaged memory and passed by reference within
each layer. To copy the data across layers the fast memcpy operation is used.

Steinberger et al. [Ste+14] presented a custom allocation scheme to manually manage mem-
ory allocations for large terrain rendering. Visionary instead uses the Unity.Collections
library, and it’s custom allocators, for fast allocation of managed und unmanaged mem-
ory.Allocations are kept to a minimum by keeping frequently used memory allocated
permanently with the Allocator.Persistent option. Temporary allocations are used with
the faster allocators Allocator.Temp and Allocator.TempJob. Memory initialization and
array safety checks are skipped.

5.5.3 Pooling Texture Buffers

While the presented memory management is optimized to efficiently allocate and deallocate
data, it is still bound by disk bandwith, memory bandwith and garbage collection.
The largest streamed data is texture data, which is copied into CPU memory only to
buffer it for transfer to the GPU. Ravi et al. [RBK20] presented a method for direct
GPU I/O, avoiding the intermediate copy by using Nvidias GPUDirect Storage [Gpu].
However, GPUDirect Storage is not yet available in Unity. Caching is used to reduce
the performance impact of texture creation and allocations of bounce buffers. Instead
of recreating textures for every streaming request, a limited number of textures is kept
in cache. If a cached texture is available, but does not match the required format, it is
resized. Resizing to a smaller size does not free the memory, but is instant. Resizing to a
larger size is instant as long as the underlying buffer is sufficiently large. In consquence,
resizing is still significantly faster than creating textures from scratch, at the cost of lazily
releasing memory.

Listing 5.3 shows how textures are rented from the TexturePool.
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Texture2D Rent(ref TextureBlob request)
{
Texture2D texture = Cache.Request();
if (texture == null)
{
texture = new Texture2D(request.Width,
request.Height,
request.Format,
request.MipmapCount,
calculatemIpmaps: false);

}
else if (texture.width != request.Width

|| texture.height != request.Height
|| texture.format != request.Format)

{
texture.Resize(request.Width,
request.Height,
request.Format,
request.MipmapCount > 0);

}
TextureFunctions.FillTextureUnsafe(texture, ref request);
return texture;
}

Listing 5.3: Caching texture buffers.

Avoiding long stalls due to garbage collection of large allocated memory caused by
unecessary temporary copies is important for real-time streaming. Visionary avoids
such copies by using reinterpretation of arrays in unmanaged memory, and copies the
memory as-is from layer to layer. Listing 5.4 shows how this is used to copy texture data
allocation-free from unmanaged memory into the texture buffer on CPU and GPU.

FillTextureUnsafe(Texture2D texture, ref TextureBlob
textureBlob)

{
NativeArray<byte> native = texture.GetRawTextureData<byte>();
textureBlob.TextureData.ToNativeArray().CopyTo(native);
texture.Apply(false);
}

Listing 5.4: Allocation-free filling of texture buffers.
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5.5.4 Caching

As explained in Section 4.2, streaming the geometry per raycast is infeasible. Multiple
consecutive rays are likely to hit the same geometry. For ray casting, a limited amount
of geometry is for this reason kept in memory at all times. Streaming is only performed
when the geometry is not yet loaded. Listing 5.5 shows the pseudocode for raycasting
against cached colliders.

RaycastResult Raycast(Ray ray, Entity entity){
if(Cache.TryGetValue(entity, out var collider)){
// Hit
} else { // Miss

if(Cache.Full) Cache.ReleaseOne(); // Free Memory
Cache.Add(entity, collider = LoadCollider(entity));

}
return collider.CastRay(ray);

}

Listing 5.5: Pseudocode for ray casting against cached colliders.

FileStreams are cached using the same pattern.
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CHAPTER 6
Results and Discussions

In this chapter, the performance of the streaming algorithm implemented in Visionary is
presented and evaluated against PRo3D. The quality of the measurements using SED
is evaluated and compared with fixed-rate subsampling. Lastly, the restrictions and
limitations of Unity as engine for this thesis are presented and discussed. Solutions
to overcome restrictions caused by Unity are presented, if they were implemented in
Visionary.

6.1 Performance
This section lists the performance results of the preprocessor, streaming, rendering and
measurement. The overall timings were measured with the C# System.Diagnostics.Stopwatch
class, and all Unity-related timings, such as delta time between two frames, were measured
with Unity’s UnityEngine.Time class.

The test system is a Windows 10 Education 64-bit (10., Build 19044) PC, with an AMD
Ryzen Threadripper 1900x 8-Core Processor, 64 GB RAM and an NVIDIA Gefroce GTX
1080 TI graphics card with 11 GB graphics memory. The system storage, from where
the application is run, is a Samsung SSD 960 PRO 512 GB. The larger file storage where
both input and output scenes are stored is a Samsung SSD 970 EVO Plus 2 TB.

PRo3D version PRo3D.Viewer.4.6.1-prerelease1 was used to evalute Visionary against.

6.1.1 Evaluation

The streaming and rendering performance was measured by performing a 60s recorded
flyover. The minimum, maximum and average frame times were recorded along with the
currently used memory and triangles rendered.
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PRo3D uses a reactive rendering system, with no renders being made when nothing
changes, while Visionary renders once per iteration of the main loop.

The fixed-rate sampling strategy from PRo3D was implemented in Visionary as well, and
by implementing the functionality to reproject lines with different sampling strategies, it
was possible to compare the two strategies within Visionary.

6.1.2 Scenes and References

Multiple different scenes were tested to evaluate different features:

• Gale Crater is the largest used dataset and the main test scene for all streaming
and rendering performance related benchmark scenarios. Figure 6.1 shows the Gale
Crater scene.

• Victoria Crater is the primary test scene for priority rendering and measuring
across priority rendered datasets. Figure 6.2 shows the Victoria Crater scene.

• Homeplate, Stereomosaic and Stimson1087 are smaller tests scenes with no out-
standing features, but were added to expand the test set. Figure 6.3a shows
the Homeplate scene, Figure 6.3b the Stereomosaic scene, and Figure 6.3c the
Stimson1087 scene.

Figure 6.1: The Gale Crater scene has in total 221 GB. LOD 0 has 156 GB with 775.4
million triangles.

70



6.1. Performance

Figure 6.2: The Victoria Crater scene has in total 2.3 GB. LOD 0 has 1.3 GB and 17.7
million triangles. The colored mesh shows data of a higher-quality layer rendered with
priority rendering.

(a) Homeplate. (b) Stereomosaic. (c) Stimson1087.

Figure 6.3: Overview of the smaller test scenes.

6.1.3 Preprocessing

In this section, the resulting file counts, file sizes and the time required for preprocessing
are discussed.

Table 6.1 shows the size and count comparison of scenes before and after preprocessing.
The size and count are shown as reported by WinDirStats [Win]. As can be seen in
table 6.1, the Gale Crater scene is the largest and most representative scene. At large
scale the file count is reduced to one third, which is expected as shown in Section 5.3.1.
The better reduction in other scenes is not relevant for streaming, as those files are used
for other functionality in PRo3D. No significant reduction in physical size is expected,
and the Gale Crater scene shows this, as most of the data consists of compressed binary
textures. The increase by 15% of physical file size for the Victoria Crater scene was
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unexpected, and the difference is caused by the physical size of texture data in both
formats due to different texture compression algorithms used. The decrease in file size
for the scenes Stimson_1087 and Homeplate was not expected. The reduction for these
scenes is achieved because the serialized colliders are smaller than the kd-tree of PRo3D.
This is particularly interesting, as the AABBs serialized with Unity are 20x larger than
required, but the serialized MeshCollider is smaller than the kd-tree format of PRo3D.
The decrease in file size for the Stereomosaic scene is expected, as the original image
files contain additional layers not supported and discarded by Visionary. Overall, a
reduction in file count to one third can be expected, but no reduction in file size. If the
additional texture layers were implemented in Visionary, the texture sizes would increase
accordingly.

Scene OPC Renderable Blobs %
Files Size Files Size Files Size

Gale Crater 342 440 222.1 GB 106 185 219.6 GB 31% 99 %
Victoria Crater 2 687 2 GB 671 2.3 GB 25% 115 %
Homeplate 726 706.2 MB 161 381.5 MB 22% 54 %
Stimson_1087 1 594 1.6 GB 555 1.1 GB 35% 69 %
StereoMosaic 3 645 3.3 GB 740 762 MB 20% 22 %

Table 6.1: Comparison of file count and sizes before and after preprocessing.

Table 6.2 shows the preprocessing duration required for all scenes. The preprocessing is
bottlenecked by the CPU processing power, as the slowest operations are the texture
conversion, mipmap calculation and creation of the Mesh Collider, which all happen on
the CPU. Most of these Unity operations are restricted to the main thread, which means
that only a single thread is used. As these operations are restricted, they also are not
allowed to be performed on background threads as discussed in Section 6.2.4.

Scene Renderable Blobs Preprocessing
HLODs Files Size Duration MB/s

Gale Crater 367 106 185 219.6 GB 72 min 52
Victoria Crater 4 671 2.3 GB 73 s 32
Homeplate 1 726 381.5 MB 16 s 23
Stimson_1087 2 555 1.1 GB 21 s 53
StereoMosaic 1 740 762 MB 13 s 58

Table 6.2: Time required for preprocessing.

6.1.4 Opening Scenes

In this section, the duration for the initial opening time of the scenes is compared to
PRo3D. The opening time is measured as the time from clicking the load button in each
tool until all OPCs are loaded.
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Table 6.3 shows the performance comparison between PRo3D and Visionary when opening
scenes. Scanning large file system hierarchies is slow in Visionary, but the directory tree
is cached, and subsequent executions are faster. The smaller scenes open within 1s in
both tools and the differences can be neglected. PRo3D has much more features, and a
difference in the order of miliseconds is expected. However, the large Gale Crater scene
opens 15x faster in Visionary. This takes 1 minute loading time in PRo3D, which is
significant.

Scene Pro3D Visionary
Duration Initial Cached

Gale Crater 1 min 10 s 4 s
Victoria Crater 226 ms 40 ms 17 ms
Homeplate - 30 ms 7 ms
Stimson_1087 230 ms 33 ms 19 ms
StereoMosaic 199 ms 32 ms 20 ms

Table 6.3: Opening scenes in PRo3D and Visionary. There is no difference when opening
scenes in PRo3D for the first or subsequent times. In Visionary the directory tree is
cached, which makes subsequent openings faster.

The Homeplate scene failed to load in all tested versions of PRo3D.

6.1.5 Rendering

In this section, the streaming and rendering performance is shown and discussed. As
streaming solutions are highly sensitive to the current camera position, camera view,
the LOD selected, and the current status of the caches, it is difficult to create valid
benchmarks. Kang et al. [KSH18] used a flyover with metrics aggregated per second
to evaluate their streaming solution for terrain rendering with unlimited detail and
resolution. A similar approach was used to evaluate the performance of Visionary. The
streaming benchmarks were measured by recording a 60s flyover in-engine, measuring
the statistics per frame, and evaluating the per second averages, minimum values and
maximum values. A flyover is used to ensure changing from highest to lowest LOD and
vice versa. To account for variance, all recordings are replayed five times. The minimum
and maximum are global minima and maxima to ensure the whole bandwith is accurately
represented.

It is important to know the size of LOD 0 to put the reduction through LOD selection
into context. Table 6.4 lists the size and triangle count of LOD 0, which is the finest
LOD, per scene.
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Scene LOD 0
Size Triangles

Gale Crater 156 GB 775.4 M
Victoria Crater 1.3 GB 17.7 M
Homeplate 171 MB 4.6 M
Stimson_1087 818 MB 3.7 M
StereoMosaic 558 MB 2.4 M

Table 6.4: Size and triangle count of LOD 0.

Figure 6.4 shows the performance metrics for a 60s flyover of the Gale Crater scene.

(a) Render time [ms]. (b) Render time / run [ms].

(c) Memory [MB]. (d) Triangles [M].

Figure 6.4: Gale Crater with camera flyover. (a) shows the averaged timing over 5
runs. (b) shows the timings per run. Most of the time the rendering is interactive, but
stuttering after large LOD changes is clearly visible. (c) shows the loaded memory over 5
runs. (d) shows the rendered triangles per frame (in millions).
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Noticable spikes in render time during large LOD changes are clearly visible. When a
run is started, the camera is teleported back to the start position of the recording. This
is visible around the 5 s mark, and the number of triangles rendered reflects this, and
the used memory shows that the system tries to stream in 2 GB of data for the next run.
The LOD selection reduces the number of triangles rendered to below 20% of the triangle
count of LOD 0 at all times, with keeping it below 40% most of the time.

While the average render time is overall sufficient for interactive real-time rendering, the
maximum render time clearly shows the stuttering during large LOD changes. After each
time a replay of the recorded flyover has finished, the camera is teleported back to the
start for the next replay. This causes a drastic spike during the initial first 10 seconds,
when LOD nodes are changed. A similar drastic change happens during camera panning
as seen between the 20 s and 30 s marks, when many LOD nodes become invisible and
are culled. Future versions of Visionary need to restrict the number of LOD changes
allowed per frame, as it is more desirable to teleport to the same LOD level, and then
gradually improve the LOD, beginning with close hierarchies, and refining further away
hierarchies later.

Figure 6.5 shows the performance when the camera is not moving. The camera is
positioned close to the surface to ensure loading finer LODs. This test shows that the
unrestricted LOD changes are the cause of the spikes seen in Figure 6.4. The constant
values for LOD distance, loaded data, and rendered triangles indicate no system activity
except Unity’s own systems for the Universal Render Pipeline, Hybrid Renderer and
Physics. While the render time is on average below 15 ms, the maximum is closer to
25 ms. This indicates a huge variability of the render times caused by the underlying
render pipeline, even without other system activity. The constant values for memory and
triangle count verify that there is no streaming activity. The rendered scene is shown
and the LODs are highlighted using false-color rendering.
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(a) Render time [ms]. (b) LOD Distance.

(c) Memory [MB]. (d) Triangles [M].

(e) Gale Crater with static camera. (f) LODs shown.

Figure 6.5: Gale Crater with static camera. (a) Altough there is no streaming activity, as
indicated by (b), the render times vary strongly, but the average render time stays below
15 ms. (c, d) The constant values for MB loaded and triangles verify that there is no
streaming system activity. (e) shows the rendered scene. (f) shows the rendered LODs.

The flyover benchmark was repeated for the Victoria Crater scene, to show the difference
between smaller and larger scenes. Figure 6.6 shows the performance in the Victoria
Crater scene. The camera zooms close to the surface between the 20 s and 30 s mark,
which causes most LOD nodes to be culled, and zooms out to the highest LOD used.
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Loading all culled nodes back in almost instantly causes a sharp spike in render times
around the 40 s mark. The cause of the sharp spike in render times is explained by
zooming out and many nodes not being view-frustum culled anymore. When almost
all nodes were culled during a close zoom in, the rapid change in culling cause a large
spike when the culled nodes are loaded back in during zooming out. Future versions
of Visionary need to keep these LOD nodes in-memory, as this benchmark shows that
releasing them is unecessary and causes a lot of pressure on the CPU and disk requesting
1 GB of data to be loaded.

(a) Render time [ms]. (b) LOD Distance.

(c) Memory [MB]. (d) Triangles [M].

Figure 6.6: (a) The average render time is well below 50 ms. (b) The reactive target
frame-rate scheduler does not react to the single spike around the 40 s mark, caused by
loading almost all LOD nodes back in when zooming out. (c) The sharp drop in memory
and triangle counts (d) close to 0 MB used of memory clearly show that Visionary is too
aggressively releasing currently not required nodes.
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6.1.6 Measurements

In this section, the results of doing measurements using SED and ODR, are presented,
and their performance is discussed.

The quality of results for fixed-rate subsampling (FRSS) and variable-rate subsampling
(VRSS) are both highly sensitive to the number of samples in relation to the distance
measured. The presented measurements and methods are for this reason evaluated both
at large distance and at short distance. Figure 6.7 shows the test setups in Gale Crater
for both longer and shorter measurements.

(a) A measurement across 58 km. (b) A measurement across 30 m.

Figure 6.7: (a) A long distance measurement across 58 km is performed to test the
streaming and measurement performance and the quality of VRSS+SED over FRSS.
(b) A shorter distance measurement of 30 m is used to evaluate performance at short
distances.

The presented variable-rate subsampling with SED (VRSS+SED) was evaluated against
VRSS without SED (VRSS), as well as the fixed-rate subsampling strategy used in
PRo3D with 100 subsamples (FRSS 100). It also was evaluated against the fixed-rate
subsampling strategy, using the same number of subsamples as VRSS+SED, to compare
them as if the numbers of subsamples were known. Table 6.5 shows the results of these
measurements.

Method Samples ms ODR m Error δ %
VRSS+SED 1025 3962 100 % 58707.65 0.00 0.00 %
VRSS 1003 274 0 % 58653.27 54.38 0.09 %
FRS 102 48 0 % 58255.98 451.67 0.77 %
FRS 1025 702 0 % 58295.32 412.33 0.70 %

Table 6.5: Quality of subsampling strategies for a 58 km distance.

As VRSS+SED guarantees that the result is a perfect cut through the terrain at 100
% ODR, it is used as a refernece point comparing all other methods. The relative error
for all methods is below 1%, but the absolute error is a few hundred meters at a 58 km
distance.
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The choice of number of samples in relation to the distance is important for subsampling
quality, as it defines the sampling frequency. Table 6.6 shows the result from the
comparison of the methods at a shorter distance of 30 m.

Method Samples ms ODR m Error δ %
VRSS+SED 89 22 ms 100 % 30.41047 0.00 0.00 %
VRSS 87 6 ms 100 % 30.37083 0.04 0.13 %
FRS 102 13 ms 0 % 30.49761 0.09 0.29 %
FRS 89 10 ms 0 % 30.46393 0.05 0.18 %

Table 6.6: Quality of subsampling strategies for a 30 m distance.

The relative error remains similar and below 1 %. In consequence, the absolute error
also is significantly lower.

Lastly, the measurement algorithm and ODR was evaluated in the Victoria Crater scene
with priority rendering. Figure 6.8 shows a measurement with ODR 82 %. Cycling
through the uncertain segments reveals multiple sources of uncertainty. Measuring across
priority layers causes uncertainty, and uncertainty due to holes in the terrain, are revealed
by this presented method.

(a) Measuring across priority
layers

(b) Uncertainty because of a
change of priority layer.

(c) Uncertainty because of
holes.

Figure 6.8: (a) shows a measurement across priority layers at the Victoria Crater scene.
The ODR is 82 %. (b) shows a segment that is uncertain because the priority layer was
changed. (c) shows a segment that is uncertain because it passes a hole in the terrain.

6.2 Engine-Specific Restrictions
In this section, restrictions caused by using Unity as an engine are discussed, and solutions
implemented to bypass them are listed.

6.2.1 Universal Rendering Pipeline

Unity’s Built-In Render Pipeline does not support rendering DOTS-based Entities. The
only rendering pipelines that support Entities are the High Definition Render Pipeline
(HDRP) and the Universal Render Pipeline (URP) [Uniu]. Visionary uses the faster,
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but less feature-rich one, which is URP. In addition, the Hybrid Renderer package is
required [Unii].

The Hybrid Renderer does not support all the features of both rendering pipelines and
DOTS. Unity lists the following limitations for version 0.51 [Unii]:

• Only a single DOTS World is supported, with support for multiple DOTS Worlds
intended for a later version.

• Desktop OpenGL or GLES are currently not supported, but planned for a future
version.

• Vulkan drivers are the only recommended graphics drivers for Android and Linux.
The Vulkan driver is considered in a bad state on many older Android devices and
Unity warns that it will never be upgraded.

• Hybrid Renderer is not yet validated on mobile or console platforms.

• Hybrid Renderer is not yet tested on XR devices, but XR support is intended for
later versions.

• Ray-tracing (DXR) is currently not supported.

6.2.2 Duplicate Datatypes

The parallel development of DOTS and the UnityEngine core namespace causes type
duplications. However, these duplicated types, which are not compatible with each other,
cause the need of frequent conversion. The recommended pattern is to use the types
GameObject, MonoBehaviour and ScriptableObject from the UnityEngine namespace for
authoring, converting the data once during startup into ECS data, and then avoiding
copying data back from the ECS [Unie]. This is not a feasible solution in many cases, as
not all functionality is available in both worlds.

This parallel development also causes multiple implementations being available for the
most basics types. These types often do not provide the same functionality and at worst
are semantically contradicting. The types to model AABB in Unity are, e.g., :

• UnityEngine.Bounds [Tecn] models the AABB with a Vector3 center and Vector3
extents. The extents are half-extents on each axis. Size is equal to the extents per
axis: extents ∗ 0.5 = size.

• Unity.Mathematics.AABB [Unij] is defined as UnityEngine.Bounds, with the dif-
ference of using float3 instead of Vector3 and size being equal to half the extents:
size = extents ∗ 2.

• Unity.Physics.Aabb [Unik] uses float3 as Unity.Mathematics.AABB, but its Extents
property is defined as the Size of the AABB with −−−−−→Extents = −−−→Max −

−−→
Min and

Aabb.Extents * 0.5 = AABB.Extents.
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Conversion between those types requires extra care. The semantic incompatibility of
the types also makes it impossible to use reinterpretation as fast method of conversion,
even when their memory layout was otherwise be equal. A temporary copy is required,
which contradicts the recommended optimizations for cache-efficient usage of the memory
hierarchy as explained in Section 5.5.

6.2.3 Blob Storage

Unity manages a special section of memory for BlobStorage. This limits the types that
can be stored in Unity.Entities.BlobAssetReference blobs. Arrays stored in blobs must be
of type Unity.Entities.BlobArray. However, the Unity API mostly only accepts arrays of
type Unity.Collections.NativeArray. To avoid allocations for temporary copies between
the two types, the BlobArray is reinterpreted allocation-free as NativeArray, which is
shown in Listing 6.1.

NativeArray<T> ToNativeArray<T>(ref this BlobArray<T> ba)
where T : struct

{
NativeArray<T> arr = NativeArrayUnsafeUtility
.ConvertExistingDataToNativeArray<T>(ba.GetUnsafePtr(),

ba.Length, Allocator.Invalid);
return arr;
}

Listing 6.1: Definition of the renderable blob. It contains both mesh and texture
information.

6.2.4 Multithreading

Unity is strongly designed around a single threaded main loop model. Many operations,
in particular creation and destruction of the two main types UnityEngine.Object and
UnityEngine.MonoBehaviour and their derivatives, are strictly limited to be executed in
the main thread. This limits multithreading in Unity, as all primary types such as Mesh,
Texture, and GameObject are derived from them.

Access to managed C# tasks and threads is available, but no restricted type may be
modified from threads other than the main thread. Long-running operations are executed
multithreaded in Visionary by the use of tasks. Unity does not provide any support for
context switching. Visionary uses UniTask [Unin], which provides support for context
switching. Listing 6.2 shows the pseudocode for performing long-running operations
in worker threads and continue with restricted operations on the main thread using
UniTask.

var task = Task.WhenAll(requests.Select(r => Task.Run(async ()
=> await Load(r)));

async UniTask Load(...){
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// Load data from filesystem ...
await UniTask.SwitchToMainThread();
// Create, Update, Modify UnityEngine.Objects ...
// Create, Update, Modify Unity.Entities ...
}

Listing 6.2: Pseudocode for using UniTask to perform a context switch to the main
thread.

DOTS provides new ways to write highly efficient parallel code with its job system [Unir].
Unity describes their job system as follows [Tecd]:

The Unity C# Job System allows users to write multithreaded code that
interacts well with the rest of Unity and makes it easier to write correct code.

It is most efficiently used together with Unity’s Burst compiler. The Burst compiler
optimized code written within its restrictions for efficient parallelization. Unity describes
their Burst compiler as follows [Unic]:

Burst is a compiler that translates from IL/.NET bytecode to highly optimized
native code using LLVM. It is released as a Unity package and integrated
into Unity using the Unity Package Manager. . . . Burst is primarily designed
to work efficiently with the Job system.

While burst-compiled job code can be highly efficient, it imposes further restrictions
compared to C# threads and tasks:

• Only blittable [gewa] data types are supported. NativeContainers to share data with
jobs, or return results from them, are provided in the Unity.Collections namespace.

• Structural changes of ECS data cause sync points. Structural changes are creating
entities, deleting entities, adding components to an entity, removing components
from an entity, and changing the value of shared components [Syn].

• Memory allocated with the Allocator.TempJob must dispose the memory within
four frames, which means jobs in general are limited to run for at most four
frames [Tech].

• Accessing static data is not recommened and will be prevented in future ver-
sions [Tece].

• Jobs can only be created and completed in the main (control) thread [Tecj].

• Allocating memory within jobs is incredibly slow and prevents the Burst compiler
from optimizing the job code [Tece].
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All operations that are restricted to the main thread also are not allowed on jobs. The
streaming performance could have been improved if the following operations were allowed
to be performed on a background thread:

• Creation and initialization of mesh objects, and filling their all related buffers
(vertex positions, normals, texture coordiantes, ...).

• Creation and initialization of texture objects, and filling all related buffers, as well
as uploading the texture data to the GPU.

Regardless of the restrictions, the combination of the job system and the burst compiler
are significant additons to Unity. Jobs are used in Visionary for both collider serialization
as shown in Section 5.4.4 and to execute burst-compiled ray casts using jobs.

6.2.5 Mesh duplication

Unity does not allow sharing geometry between the Mesh used for rendering and the
MeshCollider used for physics. This requires to duplicate the geometry for rendering and
measurement.

6.2.6 Collider Creation

Unity simplifies created MeshColliders [Unil] in undocumented ways. An example for this
is the combination of coplanar triangles to quads. While this simplification is safe and
has no effect on the accuracy of the measurement algorithm, as shown in Chapter 4, it is
unclear what other simplifications are performed. The API does not offer any control of
the behaviour, e.g, turning simplification off, or querying the resulting mesh to validate it
against the input mesh. Further research on the degree of simplification and the impact
on the accuracy of measurements is required, before measurements using Unity.Physics
can be considered trustworthy.

DOTS provided the necessary functionality for multithreaded jobs and mesh collider
serialization. Without it, the presented solution would not have been possible because
mesh creation would have been infeasibly slow.

6.2.7 Serialization

Visionary requires quick serialization of geometry in the form of Unity.Physics.Collider
for the measurement algorithm presented in Chapter 4. This was implemented using
the Unity.Entities.Serialization.StreamBinaryReader and Unity.Entities.Serialization.-
StreamBinaryWriter introduced with early version of DOTS. In a late phase of the
project, version 0.50 and 0.51 of Unity.Entities were released, and those classes were made
internal [Unid] by Unity without further notice or explanation. Visionary uses a public
implementation of the now internal classes, named DeprecatedStreamBinaryReader and
DeprecatedStreamBinaryWriter. This breaking change in DOTS introduces a major risk
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of the implementation to stop working in future version of DOTS, unless a replacement in
the form of serializing DOTS Worlds becomes available. Otherwise, an alternative spatial
acceleration structure must be implemented for the ray-casting-based measurements.
One solution is the hierarchical KD-Tree structure as used in PRo3D [Prob].

6.2.8 Textures and Image Formats

The Unity editor supports more image formats than the runtime API. Both image formats
used for OPC scenes, Direct Draw Surface (.dds) and Tagged Image File Format (.tif or
.tiff) are not supported by the runtime. The editor supports .tiff images but not .dds
images.
To solve the missing support for .dds images, the dual licensed Monogame DdsLoader
was ported under the MIT license.

6.2.9 IL2CPP

The preprocessing and streaming performance was achieved by utilizing the faster ahead-
of-time (AOT) IL2CPP scripting backend. While not all operations were faster in
IL2CPP, the overall frame times were insufficient for interactive streaming with the
same code under the Mono C# backend. The build time using IL2CPP is significantly
longer, which slows down development. Even more important, the AOT framework
restricts using libraries not compatible with an AOT framework (e.g., emitting code as
commonly used during serialization). A full list of restrictions can be found in the official
documentation [Teck].
This most of all makes it more difficult to rely on already available functionality. Mag-
ick.Net [Lemb] would have made it trivial to add support for over 100 image formats,
including .tif and .dds, but the currently available version 7.14.5.0 is not compatible with
the IL2CPP scripting backend.

6.2.10 Compatibility

The Unity scripting backend is based on Mono C# [Mona], while the engine itself
is written in C++. The use of the multiplatform Mono supports targeting multiple
platforms, at the cost of causing a large gap in functionality between the latest available
version of .NET.
At the time of writing, the highest API Compatibility supported by Unity was .NET
Standard 2.0, with the latest API compatiblity level being .NET Standard 2.1. The
latest supported C# language version is C# 9.0 when version 2021.2 or higher of the
Editor is used [Tecb]. However, not all language features are supported [Tecc]. The latest
available version of C# at the moment is C# 10.0 in .NET 6.0 [Net].
Unity plans to bring the scripting backend from Mono closer to the state-of-the-art .NET
ecosystem, and converging the JIT and AOT solutions were publicly announced [Unio]. At
the moment, there is still a large gap between .NET and Unity’s C# scripting backends.

84



6.2. Engine-Specific Restrictions

DOTS is currently only supported in selected Unity versions. Version 0.51 is restricted
to the Long-Term Support (LTS) version of the Unity Editor, with the lowest version
supported being 2020.3.30 [Unif] and the 2021 LTS version being the latest supported
version [Unig]. The highest available version is Unity 2022 [Teco].

6.2.11 DOTS

DOTS consits of many libraries. Some of them are released production ready, while
others are still in development and released only experimentally. This thesis uses the
Unity convention to refer to the version of DOTS-based on the version of the used core
packge com.unity.entities. Visionary was implemented in 0.17 and upgraded later to 0.51
when it became available in the project [Unif].

6.2.12 AABB colliders

The size of the serialized Box Colliders in Unity is 492 bytes. Compared to the 24 bytes
required to represent an AABB in single-precision, it is more than 20x larger. While
it is small enough to be kept in memory at all times, it is considerably larger and thus
extremly inefficient in terms of disk space, memory and performance.

6.2.13 Bounding Volume

The only bounding volume Unity supports as bounding volume for the render bounds
used during view-frustum culling are AABB. Even if another type of bounding volume
was available for the data, it would have to be converted and duplicated. Other geometry
types are supported for physics simulations.

6.2.14 View-Frustum Culling

Culling is the procedure to filter, or cull, elements before further processing. View-frustum
culling against the AABB was implemented to cull hierarchies and LOD nodes to avoid
streaming invisible objects. The Unity render pipeline performs another view-frustum
culling pass before rendering. This means rendered objects are view-frustum culled twice,
as there is no way to share the culling status with Unity’s render pipeline.

6.2.15 File System Access

Opening and closing file streams during streaming quickly became a bottleneck. Impor-
tantly, the safety checks and garbage created by long file paths caused it to be inefficient.
Visionary caches file streams, as explained in Section 5.5.4. This is only viable as long as
the data remains static.
The restrictions of multi-threading in Unity are most of all hindering long-running
operations. The job system and the AsyncReadManager are the only way Unity supports
multithreaded file system access, and both are highly restricted compared to .NET file
system access.
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CHAPTER 7
Conclusion and Future Work

In this thesis, we presented a streaming algorithm for out-of-core rendering of large-scale
terrain in general discrete 3D-mesh representation on commodity hardware. Furthermore,
we presented an improved polyline-based measurement algorithm, using variable-rate
subsampling and Shared Edge Detection (VRSS+SED). Such polyline-based measurement
tools are used in state-of-the-art geology software such as PRo3D [Prob] and VRGS
3.0 [Vrg]. Lastly, we presented a simple but to our knowledge novel uncertainty metric,
On-Data Ratio (ODR). ODR allows raising awareness about the uncertainty caused by
holes in the terrain or early termination during subsampling using such measurment
algorithms.

For the streaming algorithm we combined the methods of asynchronous out-of-core
rendering as described by Varadhan and Manocha [VM02] with the streaming method for
HLODs as described by Guthe and Klein [GK04]. We adapted the methods by allowing
for a higher degree of parallelization by using multiple HLODs (M-HLOD). We evaluated
our method against PRo3D, a state-of-the-art visualization tool for planetary geology, and
achieve a 15x faster loading time for the largest tested scene. Our streaming algorithm
manages to stream scenes with 775 M triangles and 156 GB on their finest LOD, and
a total size of 222 GB, at interactive frame-rates and on commodity hardware. The
algorithm uses a memory and target frame-rate scheduler to ensure efficient streaming.
However, the algorithm releases unused LOD nodes unecessarily aggressively, which led
to spikes in rendering time after large LOD changes. We would like to address this in
future versions.

The presented VRSS+SED measurement algorithm results in exact polyline segments
when neighbouring primitives are hit. It achieves this by intersecting the shared edge with
the ray casting plane to find an exact midpoint on the shared edge. In contrast to a fixed-
rate subsampling (FRSS) strategy, as used in PRo3D [TO15], VRSS+SED terminates
earlier, and is more precise at the same number of samples. In particular at large
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distances, VRSS+SED outperformed FRSS, as it is not dependent on an appropriately
selected number of samples.

The presented ODR is valuable as it raises awareness about uncertainty, where existing
methods did not consider any uncertainty. ODR proved to be especially valuable in
combination with SED, as the exact results found by SED allow classifying resulting
polyline segments as certain, where the fixed number of subsamples used by FRSS does
not allow any conclusion about the uncertainty.

The presented algorithms were implemented in a prototype, called Visionary, using the
Unity game engine and its Data-Oriented Techstack (DOTS). This showed both the
benefits of reusing functionality when using a higher-level engine and the restrictions
imposed by it. These restrictions and solutions to overcome them were discussed.

Minor contributions of this thesis are:

• The presented two-phase measurement algorithm, supports streamed large-scale
and multi-layered terrain. It achieves efficient measurement on streamed terrain by
performing the ray casting in local space.

• The presented Renderable Blob file format stores the terrain data in contrast to
the Ordered Point Cloud (OPC) file format as used by Pro3D [Prob] in CPU- and
GPU-cache-efficent memory layout.

• The presented algorithms were implemented in a prototype, called Visionary, using
the Unity Engine. This proves the viability of Unity as engine for digital terrain
surveying software for out-of-core rendered large-scale terrains and reveals the
benefits and drawbacks using it for such a use case. The benefits and drawbacks
are discussed and solutions to work around the restrictions are presented.

7.1 Future Work
Potential future works includes:

• The presented streaming algorithm was inferior in situations of large LOD changes.
We would like to address the spikes in render times due to large LOD changes in
future versions and add smooth blending between LODs.

• Our On-Data Ratio considers only a few selected sources of uncertainty, but others
could be considered as well. Most of all, the resolution of the terrain reconstruction
is a parameter usually available in GIS terrain and worth considering. Future work
could also extend the visualization methods of ODR by using false-color and heat
maps to visualize the sources of uncertainty better.

• Schütz [Sch21] suggested the combination of discrete LOD and continuous LOD
for efficient rendering of point clouds. We believe this concept would be a good fit
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for the presented streaming algorithm as well. It could be a solution to increase
the rendering performance while performing less of the much slower streaming
operations.

• DOTS is only available as an experimental release and future releases could improve
the performance, in particular if support for runtime created objects via serialization
of DOTS worlds is added.

• The accuracy of the created MeshColliders in Unity and the impact of the performed
mesh simplification requires further research before any measurement relying on it
can be trusted.

• Unreal Technologies presented Nanite [KSW21], a highly performant streaming
solution for static geometry. Future research could explore wether it is a suitable
visualization component for digital terrain surveying software.
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Appendix A.

Ordered Point Cloud File Format
In this appendix, the most important parts of the OPC specification are included. Fields
not relevant for this work were ommitted. The full specification is available in the OPC
documentation [TO].

patchhierarchy.xml

The patchhierarchy.xml file stores the relationship of LOD nodes in it’s SubPatchMap
XML node. Each entry consists of a key and a val node. The key node is the guid, and
folder name, of the patch. The val contains all children of this LOD node. RootPatchName
is the root of the LOD tree hierarchy.
<?xml version="1.0" encoding="UTF-8"?>
<Aardvark version="0">

<PatchHierarchy version="0">
<RootPatch>name-of-root-patch</RootPatch>
<SubPatchMap>

<item>
<key>guid-of-patch-1</key>
<val>

<sw>guid-of-south-west-sub-patch-of-patch-1</sw>
<se>guid-of-south-east-sub-patch-of-patch-1</se>
<nw>guid-of-north-west-sub-patch-of-patch-1</nw>
<ne>guid-of-north-east-sub-patch-of-patch-1</ne>

</val>
</item>
. . .

</SubPatchMap>
</PatchHierarchy>

</Aardvark>

Listing 1: Definition of patchhierarchy.xml containing the order of files. Reprinted from
Tobler and Ortner [TO]
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patch.xml

The patch.xml file stores the relative path of the image to the images folder and for the
positions, normals, and texture corodinate files relative to the patch folder. It furthermore
contains the local-to-world transformation matrix.

<?xml version="1.0" encoding="UTF-8"?>
<Aardvark version="0">

<Patch version="0">
<GeometryType>QuadList</GeometryType>
<Local2Global>[[ 1.0, 0.0, 0.0, 396.0 ], [ 0.0, 1.0,

0.0, 400.0 ], [ 0.0, 0.0, 1.0, 112.0 ], [ 0.0, 0.0,
0.0, 1.0 ]]</Local2Global>

<Positions>guid-of-positions-array-file.aara</Positions>
<Normals>guid-of-normals-array-file.aara</Normals>
<Coordinates>

<DiffuseColor1Coordinates>guid-of-coords-1-array-file.aara</DiffuseColor1Coordinates>
</Coordinates>
<Textures>

<DiffuseColor1Texture>guid-of-image-1/tile.jpg</DiffuseColor1Texture>
</Textures>

</Patch>
</Aardvark>

Listing 2: Definition of patch.xml containing the relative file paths and local-to-world
transformation matrix. Reprinted from Tobler and Ortner [TO]

Aardvark Array File

The Aardvark Array File (extension: .aara) contains array data in binary format. It is
defined as follows [TO]:

The Aardvark array file consists of 4 parts, stored in succession: the Type,
the Dimension, the Size, and the Data. All primitive data types are stored
in little-endian (Intel) format.

The mesh and texture coordinate information relevant for this work is of type V3f or
V2f (3- or 2-component vector, single-precision float). The dimension is 2 and stored as
a single byte. All example scenes are in RowMajor order. These are binary files and thus
no example is given.
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Appendix B.

Visionary File Format
In this appendix, an overview of the resulting file format all OPC files are converted into
is given. Most language specific keywords and optional fields were omitted. Custom types
provided by Unity are Unity.Physics.Aaab (axis-aligned bounding box defined by min
and max position), Unity.Mathematics.float3 (3-component single-precision float vector)
and Unity.Mathematics.double4x4 (4 by 4 double-precision matrix). Othert custom
non-primitve types are included in the relative listing.

Hierarchy

The file dotshierarchy.mpk is the equivalent to the patchhierarchy.xml file of OPC. Instead
of using XML files MessagePack is used as binary serialization format. To serialize
the arrays of non-standard types Unity.Mathematics.double4x4 and Unity.Physics.Aabb
the serializer is extended via MessagePack extension points for custom formatters and
resolvers. They are serialized as the length of the following array data and the array data
serialized linearly in binary.

There are a few key differences between both formats. The main difference is that
LOD hierarchies in OPC are stored as hierarchical XML nodes, but the presented LOD
hierachies flattens them to aligned arrays. All aligned arrays have a length equal to the
number of LOD nodes. The index of each LOD node refers to the position in those
arrays, e.g., components for node index 0 are stored in Names[0] and LocalToWorld[0].
Index 0 is the root of the LOD hierarchy. Parent-child relationships are stored in
separate arrays where IndexToParentIndex contains the relationship to the parent node
and IndexToChildIndices contains an array of indices of all children of a node. The

patchhierarchy.xml dotshierarchy.mpk
XML MessagePack
Hierarchical Aligned Arrays
LocalToWorld stored in patch.xml contains aligned LocalToWorld[]

Table 1: Differences between patchhierarchy.xml and dotshierarchy.mpk
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local-to-world transformation amtrix is elevated from one patch.xml file per node the the
hierarchy in one aligned array LocalToWorld[].

[MessagePackObject, NoReorder]
DotsPatchHierarchyMpk
{
// Patches/<Name[i]>:
// [0]: 04-Patch-00001~0099
// ...
[Key(0)]
string[] Names;

// Mapping from patch to sub patches
// [0]: [1, 2]
[Key(1)]
SubPatchMapping[] IndexToChildIndices;

// Mapping from patch to parent
// [0]: -1 (none)
// [1]: 0
// [2]: 0
[Key(2)]
int[] IndexToParentIndex;

// IndicesOfLevel[0] =[0]
// IndicesOfLevel[1] =[1, 2]
[Key(4)]
IndicesOfLevel[] IndicesOfLevel;

// Local Bounds
[Key(7), MessagePackFormatter(typeof(ArrayFormatter<Aabb>))]
Aabb[] LocalAabb;

// Global Bounds (without origin shift)
[Key(8), MessagePackFormatter(typeof(ArrayFormatter<Aabb>))]
Aabb[] GlobalAabb;

// LocalToWorld in double-precision
[Key(10),

MessagePackFormatter(typeof(ArrayFormatter<double4x4>))]
double4x4[] LocalToWorld;
}

[MessagePackObject]
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SubPatchMapping
{
// Indices of sub patches
[Key(0)]
int[] Indices;
}

Aabb
{
float3 Min;
float3 Max;
}

Listing 3: Definition of dotshierarchy.mpk containing the aligned arrays for relative file
paths and local-to-world transformation matrix.

Renderable Blobs

The file renderable.blob contains the mesh and texture data, including texture coordinates.
As the used serializer only supports blittable types, it is not possible to use it for
serialization of UnityEngine.Mesh and UnityEngine.Texture. Accordingly, the mesh and
texture data must be serialized, and the objects need to be recreated and reinitialized
after deserialization.

RenderableBlob
{
MeshBlob Mesh;
TextureBlob Texture;
}

MeshBlob
{
double4x4 LocalToWorld;
AABB RenderBounds;

BlobArray<VertexData> Vertices;
BlobArray<int> Indices;
}

VertexData
{
float3 Position;
float3 Normal;
float2 UV;
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}

TextureBlob
{
TextureFormat Format;
int MipmapCount;
int Width;
int Height;
BlobArray<byte> TextureData;
}

Listing 4: Definition of the renderable blob. It contains both mesh and texture
information.

*.collider.blob

The file aabb.collider.blob contains the final collider serialized as bytes. Colliders are
static and storing precalculated colliders avoids costly recreation everytime a node is
streamed in.

The file mesh.collider.blob contains the final mesh collider serialized as bytes. Creation of
MeshColliders in Unity is a slow operation, and performing it during runtime is infeasible
for large-scale terrain.
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